函數(shù)y=(3x-4)2的導(dǎo)數(shù)是
4(3x-2)
6x
6x(3x-4)
6(3x-4)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:湖南省瀏陽一中2010-2011學(xué)年高一第一次月考數(shù)學(xué)試題 題型:013
下列函數(shù)是奇函數(shù)的是
y=3x+4
y=x4+3x3
y=x3+x x∈(-3,3]
y=x3+x x∈[-3,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:013
函數(shù)y=3x-4的導(dǎo)數(shù)是
3
-4
-1
12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三11月月考理科數(shù)學(xué)試卷 題型:填空題
給出以下四個(gè)命題:
①函數(shù)的導(dǎo)函數(shù),令,,則②若,則函數(shù)y=f(x)是以4為周期的周期函數(shù);
③在數(shù)列{an}中,a1=1,Sn是其前n項(xiàng)和,且滿足Sn+1=Sn+2,則數(shù)列{an}是等比數(shù)列;
④函數(shù)y=3x+3-x (x<0)的最小值為2.
則正確命題的序號是 ________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點(diǎn),|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長度是多少時(shí),矩形AMPN的面積最?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時(shí),矩形AMPN的面積最?并求出最小面積.
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力 第一問要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當(dāng)且僅當(dāng)
(3)令
∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時(shí)y=取得最小值,即SAMPN取得最小值27(平方米).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com