已知函數(shù)g(x)=ln(x+1),其定義域?yàn)?/h1>
  1. A.
    {x|x>1}
  2. B.
    {x|x>-1}
  3. C.
    {x|-1<x<1}
  4. D.
    R

B
分析:根據(jù)對(duì)數(shù)函數(shù)的定義域可得,x+1>0,解不等式可求
解答:根據(jù)對(duì)數(shù)函數(shù)的定義域可得,x+1>0
所以,x>-1
故選:B
點(diǎn)評(píng):本題主要考查了對(duì)數(shù)函數(shù)的定義域的求解,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過(guò)點(diǎn)P(1,f(1)),Q(e,f(e))的直線(xiàn)為l,則必存在x0∈(1,e),使曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)與直線(xiàn)l平行,求x0的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導(dǎo)函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對(duì)于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=
12
mx2-2x+l+ln(x+l)(m≥1).
(1)若曲線(xiàn)C:y=g(x)在點(diǎn)P(0,1)處的切線(xiàn)l與曲線(xiàn)C有且只有一個(gè)公共點(diǎn),求m的值;
(2)求證:函數(shù)g(x)存在單凋減區(qū)間[a,b];
(3)若c=b-a,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過(guò)點(diǎn)P(1,f(1)),Q(e,f(e))的直線(xiàn)為l,則必存在x0∈(1,e),使曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)與直線(xiàn)l平行,求x0的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導(dǎo)函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對(duì)于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省撫州市臨川二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)g(x)=mx2-2x+l+ln(x+l)(m≥1).
(1)若曲線(xiàn)C:y=g(x)在點(diǎn)P(0,1)處的切線(xiàn)l與曲線(xiàn)C有且只有一個(gè)公共點(diǎn),求m的值;
(2)求證:函數(shù)g(x)存在單凋減區(qū)間[a,b];
(3)若c=b-a,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省福州三中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過(guò)點(diǎn)P(1,f(1)),Q(e,f(e))的直線(xiàn)為l,則必存在x∈(1,e),使曲線(xiàn)y=f(x)在點(diǎn)(x,f(x))處的切線(xiàn)與直線(xiàn)l平行,求x的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導(dǎo)函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對(duì)于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案