【題目】已知數(shù)列的前項(xiàng)和為,,且對(duì)任意的正整數(shù),都有,其中常數(shù).設(shè)﹒
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若且,設(shè),證明數(shù)列是等比數(shù)列;
(3)若對(duì)任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)詳見(jiàn)解析(3)
【解析】
試題(1)先根據(jù)和項(xiàng)與通項(xiàng)關(guān)系,將條件轉(zhuǎn)化為,即,再根據(jù)題設(shè)條件進(jìn)行構(gòu)造數(shù)列:,即,最后根據(jù)等差數(shù)列定義得證(2)先根據(jù)等比數(shù)列定義明確目標(biāo):為一個(gè)常數(shù),因此利用,代入化簡(jiǎn)得為,因此是首項(xiàng)為,公比為的等比數(shù)列,(3)先化簡(jiǎn)不等式,實(shí)質(zhì)討論數(shù)列:當(dāng)時(shí),,當(dāng)且時(shí),.若,則,然后分別解不等式,難點(diǎn)在當(dāng)且時(shí),需分類(lèi)討論:若時(shí),,,,,不符合,舍去.若時(shí),,,,只須即可,顯然成立.故符合條件;若時(shí),,,從而,故,只須即可,于是.
試題解析:解:∵,,
∴當(dāng)時(shí),,
從而,,﹒
又在中,令,可得,滿(mǎn)足上式,
所以,﹒
(1)當(dāng)時(shí),,,
從而,即,
又,所以數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,
所以.
(2)當(dāng)且且時(shí),
,
又,
所以是首項(xiàng)為,公比為的等比數(shù)列,﹒
(3)在(2)中,若,則也適合,所以當(dāng)時(shí),.
從而由(1)和(2)可知
當(dāng)時(shí),,顯然不滿(mǎn)足條件,故.
當(dāng)時(shí),.
若時(shí),,,,,不符合,舍去.
若時(shí),,,,,且.
所以只須即可,顯然成立.故符合條件;
若時(shí),,滿(mǎn)足條件.故符合條件;
若時(shí),,,從而,,
因?yàn)?/span>.故, 要使成立,只須即可.
于是.
綜上所述,所求實(shí)數(shù)的范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的棱長(zhǎng)為,點(diǎn)分別為棱的中點(diǎn),下列結(jié)論中,其中正確的個(gè)數(shù)是( )
①過(guò)三點(diǎn)作正方體的截面,所得截面為正六邊形;
②/平面;
③;
④異面直線與所成角的正切值為;
⑤四面體的體積等于
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù))。曲線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,射線與曲線交于點(diǎn),射線與曲線交于點(diǎn),求的面積(其中為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且是曲線的切線.
(1)求實(shí)數(shù)a的值以及切點(diǎn)坐標(biāo);
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是一幢6層的寫(xiě)字樓,每層高均為3m,在正前方36m處有一建筑物,從樓頂處測(cè)得建筑物的張角為.
(1)求建筑物的高度;
(2)一攝影愛(ài)好者欲在寫(xiě)字樓的某層拍攝建筑物.已知從攝影位置看景物所成張角最大時(shí),拍攝效果最佳.問(wèn):該攝影愛(ài)好者在第幾層拍攝可取得最佳效果(不計(jì)人的高度)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓的方程;
(2)若圓與直線交于,兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某測(cè)試團(tuán)隊(duì)為了研究“飲酒”對(duì)“駕車(chē)安全”的影響,隨機(jī)選取100名駕駛員先后在無(wú)酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車(chē)距離”測(cè)試.測(cè)試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車(chē)距離”(駕駛員從看到意外情況到車(chē)子完全停下所需要的距離).無(wú)酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表1和表2.
表1
停車(chē)距離(米) | |||||
頻數(shù) | 26 | 8 | 2 |
表2
平均每毫升血液酒精含量毫克 | 10 | 30 | 50 | 70 | 90 |
平均停車(chē)距離米 | 30 | 50 | 60 | 70 | 90 |
已知表1數(shù)據(jù)的中位數(shù)估計(jì)值為26,回答以下問(wèn)題.
(Ⅰ)求的值,并估計(jì)駕駛員無(wú)酒狀態(tài)下停車(chē)距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表2的數(shù)據(jù)計(jì)算關(guān)于的回歸方程;
(Ⅲ)該測(cè)試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車(chē)的平均“停車(chē)距離”大于(Ⅰ)中無(wú)酒狀態(tài)下的停車(chē)距離平均數(shù)的3倍,則認(rèn)定駕駛員是“醉駕”.請(qǐng)根據(jù)(Ⅱ)中的回歸方程,預(yù)測(cè)當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?
(附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線的方程為.若三角形的三個(gè)頂點(diǎn)都在拋物線上,且,則稱(chēng)該三角形為“向心三角形”.
(1)是否存在“向心三角形”,其中兩個(gè)頂點(diǎn)的坐標(biāo)分別為和?說(shuō)明理由;
(2)設(shè)“向心三角形”的一邊所在直線的斜率為,求直線的方程;
(3)已知三角形是“向心三角形”,證明:點(diǎn)的橫坐標(biāo)小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(a為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點(diǎn),l和C交于A,B兩點(diǎn),求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com