過點A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為______.
由圓的一般方程可得圓的圓心與半徑分別為:(2,3);1,
當(dāng)切線的斜率存在,設(shè)切線的斜率為k,則切線方程為:kx-y-3k+5=0,
由點到直線的距離公式可得:
|2k-3-3k+5|
k2+1
=1

解得:k=-
3
4
,
所以切線方程為:3x+4y-29=0;
當(dāng)切線的斜率不存在時,直線為:x=3,
滿足圓心(2,3)到直線x=3的距離為圓的半徑1,
x=3也是切線方程;
故答案為:3x+4y-29=0或x=3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為
3x+4y-29=0或x=3
3x+4y-29=0或x=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動圓P與定圓O1:x2+y2+4x-5=0和O2:x2+y2-4x+3=0均外切,設(shè)P點的軌跡為C.
(1)求C的方程;
(2)過點A(3,0)作直線l交曲線C于P、Q兩點,交y軸于M點,若
MA
=λ1
MP
=λ2
MQ
當(dāng)λ12=m時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

動圓P與定圓O1:x2+y2+4x-5=0和O2:x2+y2-4x+3=0均外切,設(shè)P點的軌跡為C.
(1)求C的方程;
(2)過點A(3,0)作直線l交曲線C于P、Q兩點,交y軸于M點,若
MA
=λ1
MP
=λ2
MQ
當(dāng)λ12=m時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省衡水十四中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

過點A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為   

查看答案和解析>>

同步練習(xí)冊答案