定義在區(qū)間[a,b]上的函數(shù)y=f(x),f′(x)是函數(shù)f(x)的導(dǎo)數(shù),如果?ξ∈[a,b],使得f(b)-f(a)=f′(ξ)(b-a),則稱ξ為[a,b]上的“中值點”.下列函數(shù):①f(x)=2x+1,②f(x)=x2-x+1,③f(x)=ln(x+1),④f(x)=(x-
1
2
3.其中在區(qū)間[0,1]上的“中值點”多于一個的函數(shù)是
 
(請寫出你認(rèn)為正確的所有結(jié)論的序號)
考點:導(dǎo)數(shù)的運算
專題:新定義
分析:根據(jù)“中值點”的幾何意義是在區(qū)間[a,b]上存在點,使得函數(shù)在該點的切線的斜率等于區(qū)間[a,b]的兩個端點連線的斜率值.由此定義并結(jié)合函數(shù)的圖象與性質(zhì),對于四個選項逐一判斷,即得出正確答案.
解答: 解:根據(jù)題意,“中值點”的幾何意義是在區(qū)間[a,b]上存在點,使得函數(shù)在該點的切線的斜率等于區(qū)間[a,b]的兩個端點連線的斜率值.
對于①,根據(jù)題意,在區(qū)間[a,b]上的任一點都是“中值點”,f′(x)=2,滿足f(b)-f(a)=f′(x)(b-a),∴①正確;
對于②,根據(jù)“中值點”函數(shù)的定義,拋物線在區(qū)間[a,b]只存在一個“中值點”,∴②不正確;
對于③,f(x)=ln(x+1)在區(qū)間[a,b]只存在一個“中值點”,∴③不正確;
對于④,∵f′(x)=3(x-
1
2
2,且f(2)-f(-2)=19,2-(-2)=4;
∴3(x-
1
2
2×4=19,解得x=
1
2
±
19
12
∉[0,1],∴不存在“中值點”,④不正確.
故答案為:①.
點評:本題考查了新定義的命題真假的判斷問題,重點是對導(dǎo)數(shù)及其幾何意義的理解與應(yīng)用問題,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a>0,函數(shù)f(x)=ex-ax-1(e為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(Ⅱ)若f(x)≥0對任意的x∈R恒成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-e-x-2x.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=f(2x)-4bf(x),當(dāng)x>0時,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142<
2
<1.4143,估計ln2的近似值(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的各項均為正數(shù),且滿足a5a6+a4a7=8,則log2a1+log2a2+…+log2a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)長軸為AB,短軸為CD,E是橢圓弧BD上的一點,AE交CD于K,CE交AB于L,則(
EK
AK
2+(
EL
CL
2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,其外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個樣本的頻率分布直方圖中,共有5個小矩形,若中間一個小矩形的面積等于其他4個小矩形的面積和的
1
3
,且中間一組的頻數(shù)為25,則樣本容量為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的焦點為F,已知A,B為拋物線上的兩個動點,且滿足∠AFB=120°,過弦AB的中點M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
|MN|
|AB|
的最大值為(  )
A、2
B、
2
3
3
C、1
D、
3
3

查看答案和解析>>

同步練習(xí)冊答案