橢圓的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(Ⅰ)若ΔABF2為正三角形,求橢圓的離心率;
(Ⅱ)若橢圓的離心率滿足,0為坐標原點,求證為鈍角.

(Ⅰ);(Ⅱ)見解析.

解析試題分析:(Ⅰ)由橢圓定義易得為邊上的中線,在中,可得,即得橢圓的離心率;(Ⅱ)設,,由,先得,再分兩種情況討論,①是當直線軸垂直時;②是當直線不與軸垂直時,都證明,可得結(jié)論.
試題解析:由橢圓的定義知,周長為
因為為正三角形,所以,為邊上的高線,      2分
,∴橢圓的離心率.       4分

(Ⅱ)設,因為,,所以    6分
①當直線軸垂直時,,,
=, 因為,所以,為鈍角.    8分
②當直線不與軸垂直時,設直線的方程為:,代入
整理得:,
,


      10分
, 由 ①可知 恒為鈍角.      12分
考點:1、橢圓的定義及性質(zhì);2、直線與橢圓相交的綜合應用;3、向量的數(shù)量積的坐標運算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知,橢圓C過點,兩個焦點為
(1)求橢圓C的方程;
(2) 是橢圓C上的兩個動點,如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的左焦點為,且橢圓的離心率.
(1)求橢圓的方程;
(2)設橢圓的上下頂點分別為,是橢圓上異于的任一點,直線分別交軸于點,證明:為定值,并求出該定值;
(3)在橢圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標及對應的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的參數(shù)方程為是參數(shù),是曲線軸正半軸的交點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,求經(jīng)過點與曲線只有一個公共點的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在直角坐標系中,曲線的參數(shù)方程為:為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的極坐標方程為:
(Ⅰ)寫出曲線和直線在直角坐標系下的方程;
(II)設點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左、右頂點,點在橢圓上,且直線與直線的斜率之積為
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點的兩點,直線交于點,直線交于點.① 求證:;② 若弦過橢圓的右焦點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定橢圓 ,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,且其短軸上的一個端點到的距離為.
(Ⅰ)求橢圓的方程和其“準圓”方程;
(Ⅱ)點是橢圓的“準圓”上的一個動點,過動點作直線,使得與橢圓都只有一個交點,試判斷是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,拋物線的焦點均在軸上,的中心和的頂點均為原點,每條曲線上取兩個點,將其坐標記錄于表中:











(1)求,的標準方程;
(2)設斜率不為0的動直線有且只有一個公共點,且與的準線交于,試探究:在坐標平面內(nèi)是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓,是長軸的左、右端點,動點滿足,聯(lián)結(jié),交橢圓于點

(1)當,時,設,求的值;
(2)若為常數(shù),探究滿足的條件?并說明理由;
(3)直接寫出為常數(shù)的一個不同于(2)結(jié)論類型的幾何條件.

查看答案和解析>>

同步練習冊答案