【題目】如圖,在正方形ABCD中,E為AB的中點,P為以A為圓心、AB為半徑的圓弧上的任意一點,設向量=λ+μ,則λ+μ的最小值為( )
A. B. C. D.
【答案】B
【解析】
以A為原點,以AB所在的直線為x軸,建立直角坐標系,求出向量=( +μcosθ,﹣λ+μsinθ )=(1,1),用cosθ,sinθ表示 λ和μ,根據(jù)cosθ,sinθ 的取值范圍,再結合λ+μ的單調性,即可求出范圍.
以A為原點,以AB所在的直線為x軸,建立直角坐標系,設正方形ABCD的邊長為1,
則C(1,1),D(0,1),A(0,0),B(1,0). E為AB的中點,得
設 P(cosθ,sinθ),∴=(1,1).
再由向量=λ(,﹣1)+μ(cosθ,sinθ)=(+μcosθ,﹣λ+μsinθ )=(1,1),
∴ ,
∴.由題意得.
,得=0,故λ+μ在[0,]上是增函數(shù),
當θ=0時,即cosθ=1,這時λ+μ取最小值為,
當θ=時,即cosθ=0,這時λ+μ取最大值為,
故λ+μ的取值范圍為[,5]
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,三棱錐中,平面平面,平面平面,分別是和邊上的點,且,,,,,,為的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點.離心率.
(1)求橢圓C的標準方程;
(2)若M,N分別是橢圓長軸的左、右端點,動點D滿足,連接MD交橢圓于點Q.問:x軸上是否存在異于點M的定點G,使得以QD為直徑的圓恒過直線QN,GD的交點?若存在,求出點G的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在①離心率,②橢圓過點,③面積的最大值為,這三個條件中任選一個,補充在下面(橫線處)問題中,解決下面兩個問題.
設橢圓的左、右焦點分別為,過且斜率為的直線交橢圓于兩點,已知橢圓的短軸長為,________.
(1)求橢圓的方程;
(2)若線段的中垂線與軸交于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中,p是q的必要不充分條件的是( )
A.;方程的曲線是橢圓
B.;對不等式恒成立
C.設是首項為正數(shù)的等比數(shù)列,公比小于0;對任意的正整數(shù)n,
D.已知空間向量,,;向量a與b的夾角是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點坐標為,,過垂直于長軸的直線交橢圓于、兩點,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線與橢圓交于不同的兩點、,則的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面內一動點()到點的距離與點到軸的距離的差等于1,
(1)求動點的軌跡的方程;
(2)過點的直線與軌跡相交于不同于坐標原點的兩點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家統(tǒng)計局進行第四次經(jīng)濟普查,某調查機構從15個發(fā)達地區(qū),10個欠發(fā)達地區(qū),5個貧困地區(qū)中選取6個作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 10 | 50 |
個體經(jīng)營戶 | 90 | 60 | 150 |
合計 | 130 | 70 | 200 |
(1)寫出選擇6個國家綜合試點地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有97.5%的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”,分析造成這個結果的原因并給出合理化建議.
附:參考公式: ,其中
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com