如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=BE=2,AB=2
(Ⅰ)求證:AE⊥CE;
(Ⅱ)設(shè)M是線段AB的中點(diǎn),試在線段CE上確定一點(diǎn)N,使得MN∥平面ADE.

【答案】分析:(I)根據(jù)勾股定理的逆定理,證出AE⊥BE.由AD⊥平面ABE得到AD⊥AE,結(jié)合AD∥BC證出BC⊥AE,從而得出AE⊥平面BCE,結(jié)合CE?平面BCE可得AE⊥CE.
(II)設(shè)BE的中點(diǎn)為F,CE的中點(diǎn)為N,連接MN、MF、NF.利用三角形的中位線定理,證出MF∥AE且NF∥AD,再用線面平行判定定理,證出MF∥平面ADE且NF∥平面ADE,再根據(jù)面面平行判定定理證出平面MNF∥平面ADE,進(jìn)而得到MN∥平面ADE.由此可得當(dāng)N為CE中點(diǎn)時(shí),MN∥平面ADE.
解答:解:(Ⅰ)∵AE=BE=2,AB=2,
∴AE2+BE2=8=AB2,可得AE⊥BE.----------------------(2分)
∵AD⊥平面ABE,AE?平面ABE,
∴AD⊥AE,結(jié)合AD∥BC可得BC⊥AE,---------------------(4分)
又∵BC、BE是平面BCE內(nèi)的相交直線,
∴AE⊥平面BCE,結(jié)合CE?平面BCE,可得AE⊥CE.----------------------(6分)
(Ⅱ)設(shè)BE的中點(diǎn)為F,CE的中點(diǎn)為N,連接MN、MF、NF,----(7分)
∵△ABE中,M、F分別是AB、BE的中點(diǎn),
∴MF∥AE,同理可得NF∥BC∥AD.
∵M(jìn)F?平面ADE,AE?平面ADE,
∴MF∥平面ADE.-----------------------------(9分)
同理可證NF∥平面ADE,
又∵M(jìn)F、NF是平面MNF內(nèi)的相交直線,∴平面MNF∥平面ADE,
∵M(jìn)N?平面MNF,∴MN∥平面ADE.----------------------------(12分)
由此可得:當(dāng)N為CE中點(diǎn)時(shí),MN∥平面ADE.------(13分)
點(diǎn)評(píng):本題在四棱錐E-ABCD內(nèi)證明線線垂直,并探索線面平行的問(wèn)題.著重考查了直線與平面垂直的判定與性質(zhì),線面平行、面面平行的判定與性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD與A′ABB′都是邊長(zhǎng)為a的正方形,點(diǎn)E是A′A的中點(diǎn),A′A⊥平面ABCD.
(1) 求證:A′C∥平面BDE;
(2) 求證:平面A′AC⊥平面BDE
(3) 求平面BDE與平面ABCD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)證明PQ⊥平面DCQ;
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E為BC的中點(diǎn).
(1)求點(diǎn)C到面PDE的距離;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,如果它的一個(gè)外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案