【題目】設頂點在原點,焦點在軸上的拋物線過點,過作拋物線的動弦, ,并設它們的斜率分別為, .
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求證:直線的斜率為定值,并求出其值;
(III)若,求證:直線恒過定點,并求出其坐標.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的導數(shù)f′(x)=a(x+1)(x﹣a),若f(x)在x=a處取到極大值,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0且a≠1)
(1)求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)單調(diào)區(qū)間;
(3)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐A﹣BPC中,AP⊥PC,AC⊥BC,M為AB的中點,D為PB的中點,且△PMB為正三角形.
(1)求證:BC⊥平面APC;
(2)若BC=3,AB=10,求三棱錐B﹣MDC的體積VB﹣MDC .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x
(1)試求函數(shù)F(x)=f(x)+f(2x),x∈(﹣∞,0]的最大值;
(2)若存在x∈(﹣∞,0),使|af(x)﹣f(2x)|>1成立,試求a的取值范圍;
(3)當a>0,且x∈[0,15]時,不等式f(x+1)≤f[(2x+a)2]恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)圖象如圖,是的導函數(shù),則下列數(shù)值排序正確的是( )
A.
B.
C.
D.
【答案】C
【解析】結(jié)合函數(shù)的圖像可知過點的切線的傾斜角最大,過點的切線的傾斜角最小,又因為點的切線的斜率,點的切線斜率,直線的斜率,故,應選答案C。
點睛:本題旨在考查導數(shù)的幾何意義與函數(shù)的單調(diào)性等基礎知識的綜合運用。求解時充分借助題設中所提供的函數(shù)圖形的直觀,數(shù)形結(jié)合進行解答。先將經(jīng)過兩切點的直線繞點逆時針旋轉(zhuǎn)到與函數(shù)的圖像相切,再將經(jīng)過兩切點的直線繞點順時針旋轉(zhuǎn)到與函數(shù)的圖像相切,這個過程很容易發(fā)現(xiàn),從而將問題化為直觀圖形的問題來求解。
【題型】單選題
【結(jié)束】
9
【題目】已知、為雙曲線:的左、右焦點,點在上,,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=0,an+1=an+2 +1
(1)求證數(shù)列{ }是等差數(shù)列,并求出an的通項公式;
(2)若bn= ,求數(shù)列的前n項的和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為 . (Ⅰ)求圓C的普通方程和直線l的直角坐標方程;
(Ⅱ)設M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com