已知雙曲線數(shù)學公式-數(shù)學公式=1(a>0,b>0)的離心率e=數(shù)學公式,直線l過A(a,0),B(0,-b)兩點,原點O到直線l的距離是數(shù)學公式
(1)求雙曲線的方程;
(2)過點B作直線m交雙曲線于M、N兩點,若數(shù)學公式數(shù)學公式=-23,求直線m的方程.

解:(1)依題意,l方程+=1,即bx-ay-ab=0,由原點O到l的距離為,得
==,又e==,
∴b=1,a=
故所求雙曲線方程為-y2=1.
(2)顯然直線m不與x軸垂直,設m方程為y=kx-1,
則點M、N坐標(x1,y1),(x2,y2)是方程組的解,
消去y,得(1-3k2)x2+6kx-6=0.①
依題意,1-3k2≠0,由根與系數(shù)關系,
知x1+x2=,x1x2=
=(x1,y1)•(x2,y2)=x1x2+y1y2
=x1x2+(kx1-1)(kx2-1)
=(1+k2)x1x2-k(x1+x2)+1
=-+1=+1.
又∵=-23,
+1=-23,k=±,
當k=±時,方程①有兩個不相等的實數(shù)根,
∴方程為y=x-1或y=-x-1.
分析:(1)先求出直線l的方程,再點到直線的距離公式建立關于a,b,c的方程,解這個方程求出a,b,從而得到雙曲線的方程.
(2)設m方程為y=kx-1,則點M、N坐標(x1,y1),(x2,y2)是方程組的解,消去y,得(1-3k2)x2+6kx-6=0.由根與系數(shù)關系和題設條件推導出k的值,從而求出直線m的方程.
點評:本題是雙典線的綜合題,重點考查雙曲線的性質及其應用,具有一定的難度.解題時要注意根與系數(shù)的關系的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線=1(a>0,b>0)的右焦點為F,右準線與一條漸近線交于點A,△OAF的面積為 (O為原點),則兩條漸近線的夾角為(    )

A.30°             B.45°              C.60°              D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山西省晉中市昔陽中學高二(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省六安市壽縣迎河中學高二(上)第三次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省南通市啟東市匯龍中學高二(上)第二次學情調(diào)查數(shù)學試卷(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年貴州省冊亨縣民族中學高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

同步練習冊答案