一般地,我們把函數(shù)h(x)=anxn+an-1xn-1+…+a1x+a0(n∈N)稱為多項式函數(shù),其中系數(shù)a0,a1,…,an∈R.
設(shè) f(x),g(x)為兩個多項式函數(shù),且對所有的實數(shù)x等式f[g(x)]=g[f(x)]恒成立.
(Ⅰ) 若f(x)=x2+3,g(x)=kx+b(k≠0).
①求g(x)的表達式;
②解不等式f(x)-g(x)>5.
(Ⅱ)若方程f(x)=g(x)無實數(shù)解,證明方程f[f(x)]=g[g(x)]也無實數(shù)解.
(Ⅰ)①∵f[g(x)]=g[f(x)]即(kx+b)2+3=k(x2+3)+b k2x2+2kbx+b2+3=kx2+3k+b
k=k2
2kb=0
b2+3=3k+b
解得
k=1
b=0
∴g(x)=x
②f(x)-g(x)>5,即x2-x+3>5 解得 x>2或x<-1
(Ⅱ)反證法:F(x)=f(x)-g(x)則 F[f(x)]=f[f(x)]-g[f(x)]F[g(x)]=f[g(x)]-g[g(x)]若結(jié)論成立,則推出 F[f(x)]+F[g(x)]=0; 即F[f(x)]=-F[g(x)]說明存在一點a,a介于f(x)與g(x)之間,滿足F(a)=0 因為f(x)=g(x)無實數(shù)解,則F(x)=0永遠不成立,推出假設(shè)不成立,
方程f(x)=g(x)無實數(shù)解,方程f[f(x)]=g[g(x)]也無實數(shù)解.證畢
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一般地,我們把函數(shù)h(x)=anxn+an-1xn-1+…+a1x+a0(n∈N)稱為多項式函數(shù),其中系數(shù)a0,a1,…,an∈R.
設(shè) f(x),g(x)為兩個多項式函數(shù),且對所有的實數(shù)x等式f[g(x)]=g[f(x)]恒成立.
(Ⅰ) 若f(x)=x2+3,g(x)=kx+b(k≠0).
①求g(x)的表達式;
②解不等式f(x)-g(x)>5.
(Ⅱ)若方程f(x)=g(x)無實數(shù)解,證明方程f[f(x)]=g[g(x)]也無實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一般地,我們把函數(shù)h(x)=anxn+an-1xn-1+…+a1x+a0(n∈N)稱為多項式函數(shù),其中系數(shù)a0,a1,…,an∈R.
設(shè) f(x),g(x)為兩個多項式函數(shù),且對所有的實數(shù)x等式f[g(x)]=g[f(x)]恒成立.
(Ⅰ) 若f(x)=x2+3,g(x)=kx+b(k≠0).
①求g(x)的表達式;
②解不等式f(x)-g(x)>5.
(Ⅱ)若方程f(x)=g(x)無實數(shù)解,證明方程f[f(x)]=g[g(x)]也無實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市西城區(qū)(北區(qū))高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

一般地,我們把函數(shù)h(x)=anxn+an-1xn-1+…+a1x+a(n∈N)稱為多項式函數(shù),其中系數(shù)a,a1,…,an∈R.
設(shè) f(x),g(x)為兩個多項式函數(shù),且對所有的實數(shù)x等式f[g(x)]=g[f(x)]恒成立.
(Ⅰ) 若f(x)=x2+3,g(x)=kx+b(k≠0).
①求g(x)的表達式;
②解不等式f(x)-g(x)>5.
(Ⅱ)若方程f(x)=g(x)無實數(shù)解,證明方程f[f(x)]=g[g(x)]也無實數(shù)解.

查看答案和解析>>

同步練習(xí)冊答案