定義在區(qū)間(0,
π2
)
上的函數(shù)y=6cosx的圖象與y=5tanx的圖象的交點(diǎn)為P,過點(diǎn)P作PP1⊥x軸于點(diǎn)P1,直線PP1與y=sinx的圖象交于點(diǎn)P2,則線段P1P2的長為
 
分析:先將求P1P2的長轉(zhuǎn)化為求sinx的值,再由x滿足6cosx=5tanx可求出sinx的值,從而得到答案.
解答:解:線段P1P2的長即為sinx的值,精英家教網(wǎng)
且其中的x滿足6cosx=5tanx,解得sinx=
2
3
.線段P1P2的長為
2
3

故答案為
2
3
點(diǎn)評:考查三角函數(shù)的圖象、數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間(0,
π2
)
上的函數(shù)y=4tanx的圖象與y=6sinx的圖象交于點(diǎn)P,過點(diǎn)P作x軸的垂線,垂足為P1,直線PP1與函數(shù)y=cosx的圖象交于點(diǎn)P2,則線段P1P2的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間(0,
π
2
)
上的函數(shù)y=sin2x的圖象與y=
1
2
cosx
圖象的交點(diǎn)橫坐標(biāo)為α,則tanα的值為
15
15
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4,g(x)=
ax+1x+1
,(a≥0)
(1)求函數(shù)y=f(x)的最小值m(a);
(2)討論函數(shù)y=g(x)的單調(diào)性
(3)若對任意x1,x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)一模)已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
x2x+1

(1)求函數(shù)y=f(x)的最小值m(a);
(2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2xx+1

(1)求函數(shù)y=f(x)的最小值m(a)及g(x)的值域;
(2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案