若數(shù)列{an}滿足an+1=an+(數(shù)學(xué)公式n,a1=1,則an=________.

2-(n∈N*
分析:本題的遞推關(guān)系式類(lèi)似于等差數(shù)列的遞推式,可用累加法來(lái)處理,屬于基礎(chǔ)題,于是連續(xù)寫(xiě)出n個(gè)遞推等式累加可得an
解答:由已知可得,an+1-an=(n,所以有:a2-a1=(1,a3-a2=(2,…,an-an-1=(n-1(n≥2),
上述n-1個(gè)式子累加可得:an-a1=(1+(2+…+(n-1==(n≥2),
所以得,an=a1+=2-(n≥2),
因?yàn)楫?dāng)n=1時(shí)上式也成立,因此有an=2-(n∈N*
答:2-(n∈N*
點(diǎn)評(píng):本題的遞推關(guān)系式較易處理,需要注意一點(diǎn)即得到an=2-(n≥2)之后,需要驗(yàn)證n=1的情況,若適合上式可
得到an=2-(n∈N*),否則若不適合需要用分段的形式來(lái)表示.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)于數(shù)列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•煙臺(tái)二模)若數(shù)列{an}滿足an+12-
a
2
n
=d
(d為正常數(shù),n∈N+),則稱(chēng){an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•三明模擬)若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱(chēng)數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于
1
m
,那么正數(shù)m的最小取值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱(chēng)數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱(chēng)數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案