【題目】已知數(shù)列滿足, ,( N*).

(Ⅰ)寫(xiě)出的值;

(Ⅱ)設(shè),求的通項(xiàng)公式;

(Ⅲ)記數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和的最小值.

【答案】;(;.

【解析】試題分析:根據(jù)遞推關(guān)系式寫(xiě)出前六項(xiàng)即可;(Ⅱ)利用等差數(shù)列定義證明是等差數(shù)列,并寫(xiě)出其通項(xiàng)公式;(Ⅲ)根據(jù)等差數(shù)列的性質(zhì)寫(xiě)出再證出是等比數(shù)列,寫(xiě)出通項(xiàng)公式,可知當(dāng)時(shí)項(xiàng)是非正的,從而得其最小值.

試題解析: ;

設(shè) ,

所以是以1為首項(xiàng),2為公差的等差數(shù)列,所以.

解法1: , ,

所以是以1為首項(xiàng), 為公差的等差數(shù)列,所以數(shù)列的前n個(gè)奇數(shù)項(xiàng)之和為,可知, ,

所以數(shù)列的前n個(gè)偶數(shù)項(xiàng)之和為.

所以,所以.

因?yàn)?/span>,且

所以數(shù)列是以為首項(xiàng), 為公差的等差數(shù)列.

可得

所以當(dāng)時(shí),數(shù)列的前項(xiàng)和的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的有 . (填上所有正確命題的序號(hào)) ①一質(zhì)點(diǎn)在直線上以速度v=3t2﹣2t﹣1(m/s)運(yùn)動(dòng),從時(shí)刻t=0(s)到t=3(s)時(shí)質(zhì)點(diǎn)運(yùn)動(dòng)的路程為15(m);
②若x∈(0,π),則sinx<x;
③若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
④已知函數(shù) ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinωx+λcosωx,其圖象的一個(gè)對(duì)稱中心到最近的一條對(duì)稱軸的距離為 ,且在x= 處取得最大值.
(1)求λ的值.
(2)設(shè) 在區(qū)間 上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a<0,q:實(shí)數(shù)x滿足x2﹣x﹣6≤0或x2+2x﹣8>0,且非p是非q的必要不充分條件,則實(shí)數(shù)a的范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0A則實(shí)數(shù)b的取值范圍是(
A.b≠0
B.b<0或b≥4
C.0≤b<4
D.b≤4或b≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的傾斜角為且經(jīng)過(guò)點(diǎn)以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為.

1)若直線與曲線有公共點(diǎn),求的取值范圍;

(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】廣東某市一玩具廠生產(chǎn)一種玩具深受大家喜歡,經(jīng)市場(chǎng)調(diào)查該商品每月的銷售量(單位:千件)與銷售價(jià)格(單位:元/件)滿足關(guān)系式,其中, 為常數(shù)已知銷售價(jià)格為4/件時(shí),每日可售出玩具21千件.

1的值;

2假設(shè)該廠生產(chǎn)這種玩具的成本、員工工資等所有開(kāi)銷折合為每件2元(只考慮銷售出的件數(shù)),試確定銷售價(jià)格的值,使該廠每日銷售這種玩具所獲得的利潤(rùn)最大(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 的交點(diǎn), 上任意一點(diǎn).

1)證明:平面平面

2)若平面,并且二面角的大小為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案