若直線與直線的交點位于第一象限,則實數(shù)的取值范圍是( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.
已知橢圓,常數(shù)、,且.
(1)當(dāng)時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;
(2)過原點且斜率分別為和()的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內(nèi)),試用表示四邊形的面積;
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市嘉定、黃浦區(qū)2010屆高三第二次模擬考試數(shù)學(xué)理 題型:解答題
(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.
已知橢圓,常數(shù)、,且.
(1)當(dāng)時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;
(2)過原點且斜率分別為和()的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內(nèi)),試用表示四邊形的面積;
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
己知在銳角ΔABC中,角所對的邊分別為,且
(I )求角大。
(II)當(dāng)時,求的取值范圍.
20.如圖1,在平面內(nèi),是的矩形,是正三角形,將沿折起,使如圖2,為的中點,設(shè)直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側(cè)。
(1)求證:平面;
(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。
21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù) ,
(Ⅰ)若在上存在最大值與最小值,且其最大值與最小值的和為,試求和的值。
(Ⅱ)若為奇函數(shù):
(1)是否存在實數(shù),使得在為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;
(2)如果當(dāng)時,都有恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市黃浦、嘉定區(qū)高三下學(xué)期高考模擬(理) 題型:解答題
本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.
已知橢圓,常數(shù)、,且.
(1)當(dāng)時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;
(2)過原點且斜率分別為和()的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內(nèi)),試用表示四邊形的面積;
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考北京卷理科19)(本小題共14分)
已知曲線.
(1)若曲線是焦點在軸上的橢圓,求的取值范圍;
(2)設(shè),曲線與軸的交點為,(點位于點的上方),直線與
曲線交于不同的兩點,,直線與直線交于點,求證:,,
三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com