【題目】目前,成都市B檔出租車的計價標準是:路程2km以內(nèi)(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元/km).(現(xiàn)實中要計等待時間且最終付費取整數(shù),本題在計算時都不予考慮)
(1)將乘客搭乘一次B檔出租車的費用f(x)(元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客行程為16km,他準備先乘一輛B檔出租車行駛8km,然后再換乘另一輛B檔出租車完成余下行程,請問:他這樣做是否比只乘一輛B檔出租車完成全部行程更省錢?

【答案】
(1)解:由題意得,車費f(x)關(guān)于路程x的函數(shù)為:

=


(2)解:只乘一輛車的車費為:f(16)=2.85×16﹣5.3=40.3(元),

換乘2輛車的車費為:2f(8)=2×(4.2+1.9×8)=38.8(元).

∵40.3>38.8,

∴該乘客換乘比只乘一輛車更省錢


【解析】(1)仔細審題,由成都市B檔出租車的計價標準,能夠列出乘客搭乘一次B檔出租車的費用f(x)(元)表示為行程x(0<x≤60,單位:km)的分段函數(shù).(2)只乘一輛車的車費為:f(16)=2.85×16﹣5.3=40.3元,換乘2輛車的車費為:2f(8)=2×(4.2+1.9×8)=38.8元,由此能得到該乘客換乘比只乘一輛車更省錢.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga +x)(其中a>1).
(1)判斷函數(shù)y=f(x)的奇偶性,并說明理由;
(2)判斷 (其中m,n∈R,且m+n≠0)的正負,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(﹣3)=0,則(x﹣1)f(x)<0的解集是(
A.{x|﹣3<x<0或1<x<3}
B.{x|1<x<3}
C.{x|x>3或x<﹣3}
D.{x|x<﹣3或x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)一動點與兩定點連線的斜率之積等于.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設直線 )與軌跡交于、兩點,線段的垂直平分線交軸于點,當變化時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程 =1表示雙曲線,命題q:x∈(0,+∞),x2﹣mx+4≥0恒成立,若p∨q是真命題,且綈(p∧q)也是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)函數(shù)的圖象能否與軸相切?若能與軸相切,求實數(shù)的值;否則,請說明理由;

(2)若函數(shù)上單調(diào)遞增,求實數(shù)能取到的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面 ,且

(Ⅰ)記線段的中點為,在平面內(nèi)過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

(Ⅱ)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=0處的切線為l:4x+y﹣5=0,若x=﹣2時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段,F(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表.

分數(shù)(分數(shù)段)

頻數(shù)(人數(shù))

頻率

[60,70)

0.16

[70,80)

22

[80,90)

14

0.28

[90,100]

合 計

50

1

(1)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);

(2)決賽規(guī)則如下:參加決賽的每位同學依次口答4道小題,答對2道題就終止答題,并獲得一等獎。如果前三道題都答錯,就不再答第四題。某同學進入決賽,每道題答對的概率的值恰好與頻率分布表中不少于80分的頻率的值相同.

①求該同學恰好答滿4道題而獲得一等獎的概率;

②記該同學決賽中答題個數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案