已知函數(shù)(n∈N+),且y=f(x)的圖象經(jīng)過點(diǎn)(1,n2),數(shù)列{an}(n∈N+)為等差數(shù)列.(1)求數(shù)列{ an}的通項(xiàng)公式;
(2)當(dāng)n為奇函數(shù)時,設(shè),是否存在自然數(shù)m和M,使不等式m<<M恒成立,若存在,求出M-m的最小值;若不存在,說明理由.
(1) an=2n-1 (2) M-m的最小值為2.
(1)據(jù)題意:f(1)=n2 即
令n=1 則a0+a1=1,a1=1-a0 令n=2 則a0+a1+a2=22,a2=4-(a0+a1)=4-1=3
令n=3 則a0+a1+a2+a3=32,a3=9-(a0+a1+a2)=9-4=5 ∵{an}為等差數(shù)列
∴d=a3-a2=5-3=2 a1=3-2=1 a0=0 an=1+(n-1)·2=2n-1
(2)由(1)
n為奇數(shù)時,
相減得:
令,.
∴Cn+1≤Cn,Cn隨n增大而減小 又隨n增大而減小
∴g()為n的增函數(shù),當(dāng)n=1時,g()=
而
∴使m<g()<M恒成立的自然m的最大值為0,M最小值為2. M-m的最小值為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
4x-2 |
x+1 |
an-2 |
a n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2x+1 |
x+2 |
an-1 |
a n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4 |
1 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
a |
1 |
n |
2 |
n |
n |
n |
e |
e-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com