分析 (1)由已知得,小明中獎的概率為$\frac{2}{3}$,小紅中獎的概率為$\frac{2}{5}$,且兩人中獎與否互不影響.記“這2人的累計得分X≤3”的事件為A,則事件A包含有“X=0”,“X=2”,“X=3”三個兩兩互斥的事件,由此能求出這2人的累計得分X≤3的概率.
(2)設(shè)小明、小紅都選擇方案甲所獲得的累計得分為X1,由已知得X1的所有可能取值為0,2,4,分別求出相應(yīng)的概率,由此能求出X1的分布列和E(X1);小明、小紅都選擇方案乙所獲得的累計得分為X2,由已知得X2的所有可能取值為0,3,6,分別求出相應(yīng)的概率,由此能求出X2的分布列和E(X2),從而得到他們都選擇方案甲進(jìn)行投資時,累計得分的數(shù)學(xué)期望較大.
解答 (本題滿分12分)
解:(1)由已知得,小明中獎的概率為$\frac{2}{3}$,小紅中獎的概率為$\frac{2}{5}$,
且兩人中獎與否互不影響.記“這2人的累計得分X≤3”的事件為A,
則事件A包含有“X=0”,“X=2”,“X=3”三個兩兩互斥的事件,…(1分)
因為P(X=0)=(1-$\frac{2}{3}$)×(1-$\frac{2}{5}$)=$\frac{1}{5}$,
P(X=2)=$\frac{2}{3}$×(1-$\frac{2}{5}$)=$\frac{2}{5}$,
P(X=3)=(1-$\frac{2}{3}$)×$\frac{2}{5}$=$\frac{2}{15}$,
所以P(A)=P(X=0)+P(X=2)+P(X=3)=$\frac{11}{15}$,
即這2人的累計得分X≤3的概率為$\frac{11}{15}$.…(5分)
(2)設(shè)小明、小紅都選擇方案甲所獲得的累計得分為X1,由已知得X1的所有可能取值為0,2,4,
P(X1=0)=$\frac{1}{3}×\frac{1}{3}$=$\frac{1}{9}$,
P(X1=2)=$\frac{2}{3}×\frac{1}{3}+\frac{1}{3}×\frac{2}{3}$=$\frac{4}{9}$,
P(X1=4)=$\frac{2}{3}×\frac{2}{3}$=$\frac{4}{9}$,
∴X1的分布列如下:
X1 | 0 | 2 | 4 |
P | $\frac{1}{9}$ | $\frac{4}{9}$ | $\frac{4}{9}$ |
X2 | 0 | 3 | 6 |
P | $\frac{9}{25}$ | $\frac{12}{25}$ | $\frac{4}{25}$ |
點評 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認(rèn)真審題,注意相互獨立事件概率乘法公式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 102 | B. | 49 | C. | 50 | D. | 51 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{945}$ | B. | $\frac{4}{63}$ | C. | $\frac{8}{63}$ | D. | $\frac{16}{63}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {2,3,4} | C. | {2,4} | D. | {x|1<x≤4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com