用總長(zhǎng)為14.8m的鋼條制作一個(gè)長(zhǎng)方體容器的框架,如果所制作容器的底面的一邊比另一邊長(zhǎng)0.5m,那么高為多少時(shí)容器的容積最大?并求出它的最大容積.

當(dāng)高為時(shí),容器的容積最大,最大容積為.

解析試題分析:先設(shè)容器底面短邊長(zhǎng)為,利用長(zhǎng)方體的體積公式求得其容積表達(dá)式,再利用導(dǎo)數(shù)研究它的單調(diào)性,進(jìn)而得出此函數(shù)的最大值即可.
試題解析:設(shè)容器底面短邊的邊長(zhǎng)為,容積為,則底面另一邊長(zhǎng)為,高為:.
由題意知:,,
.
,解之得:(舍去).
又當(dāng)時(shí),為增函數(shù);當(dāng)時(shí),為減函數(shù).
所以時(shí)取得極大值,這個(gè)極大值就是時(shí)的最大值,即,此時(shí)容器的高為1.2.
所以當(dāng)高為時(shí),容器的容積最大,最大值為.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地上年度電價(jià)為0.8元,年用電量為1億千瓦時(shí).本年度計(jì)劃將電價(jià)調(diào)至0.55元~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至元,則本年度新增用電量(億千瓦時(shí))與元成反比例.又當(dāng)時(shí),
(1)求之間的函數(shù)關(guān)系式;
(2)若每千瓦時(shí)電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門的收益將比上年增加20%?[收益用電量(實(shí)際電價(jià)-成本價(jià))]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

用水清洗一堆蔬菜上殘留的農(nóng)藥,對(duì)用一定量的水清洗一次的效果作如下假定:用一個(gè)單位的水可洗掉蔬菜上殘留農(nóng)藥的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)
⑴試規(guī)定的值,并解釋其實(shí)際意義;
⑵試根據(jù)假定寫出函數(shù)應(yīng)滿足的條件和具有的性質(zhì);
⑶設(shè),現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成兩份后清洗兩次.試問(wèn)用那種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) (x∈R,且x≠2).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù)與函數(shù)在x∈[0,1]上有相同的值域,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某漁業(yè)公司年初用49萬(wàn)元購(gòu)買一艘捕魚船,第一年各種費(fèi)用6萬(wàn)元,以后每年都增加2萬(wàn)元,每年捕魚收益25萬(wàn)元.
(1)問(wèn)第幾年開(kāi)始獲利?
(2)若干年后,有兩種處理方案:①年平均獲利最大時(shí),以18萬(wàn)元出售該漁船;②總純收入獲利最大時(shí),以9萬(wàn)元出售該漁船.問(wèn)哪種方案最合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求證:二次函數(shù)的圖象與軸交于的充要條件為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=lnx+a,其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
(2)求證:對(duì)于任意的n∈N*,且n>1時(shí),都有l(wèi)nn>++…+恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù),設(shè)內(nèi),則的最小值為_(kāi)________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知不等式x2-logax<0,當(dāng)x∈(0,)時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案