設(shè)函數(shù)f(x,n)=(1+x)n,(n∈N*).
(1)求f(x,6)的展開式中系數(shù)最大的項;
(2)若f(i,n)=32i(i為虛數(shù)單位),求C
 
1
n
-C
 
3
n
+C
 
5
n
-C
 
7
n
+C
 
9
n
考點:二項式定理的應(yīng)用
專題:計算題,二項式定理
分析:(1)展開式中系數(shù)最大的項是第4項;
(2)(1+i)n=32i,兩邊取模,求出n,利用(1+x)10=(
C
0
10
-
C
2
10
+
C
4
10
-
C
6
10
+
C
8
10
-
C
10
10
+(
C
1
10
-
C
3
10
+
C
5
10
-
C
7
10
+
C
9
10
)i=32i,可得結(jié)論.
解答: 解:(1)展開式中系數(shù)最大的項是第4項=
C
3
6
(x)3
=20x3;…5′
(2)由已知,(1+i)n=32i,兩邊取模,得(
2
)n
=32,所以n=10.
所以C
 
1
n
-C
 
3
n
+C
 
5
n
-C
 
7
n
+C
 
9
n
=
C
1
10
-
C
3
10
+
C
5
10
-
C
7
10
+
C
9
10
,
而(1+x)10=(
C
0
10
-
C
2
10
+
C
4
10
-
C
6
10
+
C
8
10
-
C
10
10
+(
C
1
10
-
C
3
10
+
C
5
10
-
C
7
10
+
C
9
10
)i=32i
所以
C
1
10
-
C
3
10
+
C
5
10
-
C
7
10
+
C
9
10
=32.
點評:本題考查二項式定理的運用,考查學(xué)生分析解決問題的能力,考查復(fù)數(shù)的運算,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB=4,C為圓周上一點,AC=3,CD是⊙O的切線,BD⊥CD于D,則CD=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定有限單調(diào)遞增數(shù)列{xn}(至少有兩項),其中xi≠0(1≤i≤n),定義集合A={(xi,xj)|1≤i,j≤n,且i,j∈N*}.若對任意的點A1∈A,存在點A2∈A使得
OA1
OA2
(O為坐標(biāo)原點),則稱數(shù)列{xn}具有性質(zhì)P.例如數(shù)列{xn}:-2,2具有性質(zhì)P.以下對于數(shù)列{xn}的判斷:
①數(shù)列{xn}:-2,-1,1,3具有性質(zhì)P;
②若數(shù)列{xn}滿足xn=
-1,n=1
2n-1,2≤n≤2014
,則該數(shù)列具有性質(zhì)P;
③若數(shù)列{xn}具有性質(zhì)P,則數(shù)列{xn}中一定存在兩項xi,xj,使得xi+xj=0;
其中正確的是( 。
A、①②③B、②③C、①②D、③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
的兩焦點F1(-1,0),F(xiàn)2(1,0),且離心率為
2
2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)經(jīng)過橢圓C的上頂點B的直線與橢圓另一個交點為A,且滿足
BA
BF2
=2
,求△ABF2外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013年12月21日上午10時,省會首次啟動重污染天氣Ⅱ級應(yīng)急響應(yīng),正式實施機動車車尾號限行,當(dāng)天某報社為了解公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 6 9 6 3 4
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[55,65),[65,75)的被調(diào)查者中各隨機選取1人進(jìn)行進(jìn)行追蹤調(diào)查,求兩人中至少有一人贊成“車輛限行”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(2m-3)x+m2-1,m∈R,若x∈〔-2,4〕
(1)求f(x)的最小值g(min);
(2)求f(x)的最大值g(max).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+
ax
x+1
(a∈R)
(Ⅰ)當(dāng)a=2時,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)求證:ln(1+
1
n
1
n
-
1
n2
(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)解不等式:|x-1|+|2x+5|<8;
(2)已知a,b,c>0,且a+b+c=1,證明:
a2
b+3c
+
b2
c+3a
+
c2
a+3b
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=asinxcosx-cos2x+sin2x,a∈R,且f(-
π
3
)=f(0).
(1)求實數(shù)a的值;
(2)將f(x)化成y=Asin(wx+φ)的形式,求f(x)的單調(diào)增區(qū)間;
(3)將函數(shù)f(x)圖象上所有點縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼膬杀,再向左平?span id="753hbfp" class="MathJye">
π
6
個單位,所得圖象對應(yīng)的函數(shù)為g(x),當(dāng)x∈[
π
6
,
2
3
π
]時,求g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案