13.已知$a={(\frac{1}{3})^{\frac{1}{2}}},b={log_{\frac{1}{2}}}\frac{1}{3},c={log_3}\frac{1}{2}$則( 。
A.C>b>aB.b>c>aC.b>a>cD.a>b>c

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵$a={(\frac{1}{3})^{\frac{1}{2}}},b={log_{\frac{1}{2}}}\frac{1}{3},c={log_3}\frac{1}{2}$,
∴0<a=($\frac{1}{3}$)${\;}^{\frac{1}{2}}$<($\frac{1}{3}$)0=1,
b=$lo{g}_{\frac{1}{2}}\frac{1}{3}$>$lo{g}_{\frac{1}{2}}\frac{1}{2}$=1,
c=$c=lo{g}_{3}\frac{1}{2}<lo{g}_{3}1=0$,
∴b>a>c.
故選:C.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某種定點(diǎn)投籃游戲的規(guī)則如下:每人投籃10次,如果某同學(xué)某次沒(méi)有投進(jìn),則罰該同學(xué)做俯臥撐2個(gè).現(xiàn)有一同學(xué)參加該游戲,已知該同學(xué)在該點(diǎn)投籃的命中率為0.6,設(shè)該同學(xué)參加本次比賽被罰做俯臥撐的總個(gè)數(shù)記為X,則X的數(shù)學(xué)期望為( 。
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.執(zhí)行下面的程序框圖,若輸入的N是5,那么輸出的S=-46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若直線AB的方程為$\sqrt{3}$x+y-7=0,則直線AB的傾斜角是( 。
A.135°B.120°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合$A=\{x|\frac{x+3}{x-3}≤0\}$,B={x|x-1≥0},則A∩B為( 。
A.[1,3]B.[1,3)C.[-3,∞)D.(-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=ax3+x+1的圖象在點(diǎn)(1,f(1))處的切線與直線x+4y=0垂直,則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={5},B={1,2},C={1,3,4},從這三個(gè)集合中各取一個(gè)元素構(gòu)成空間直角坐標(biāo)系上的坐標(biāo),則確定的不同點(diǎn)的個(gè)數(shù)為( 。
A.6B.32C.33D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一種飲料每箱裝有6聽(tīng),經(jīng)檢測(cè),某箱中每聽(tīng)的容量(單位:ml)如以下莖葉圖所示.
(Ⅰ)求這箱飲料的平均容量和容量的中位數(shù);
(Ⅱ)如果從這箱飲料中隨機(jī)取出2聽(tīng)飲用,求取到的2聽(tīng)飲料中至少有1聽(tīng)的容量為250ml的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.平面上兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=k
(1)求動(dòng)點(diǎn)P的軌跡;
(2)當(dāng)k=4時(shí),動(dòng)點(diǎn)P的軌跡為曲線C,已知$M(-\frac{1}{2},0)$,過(guò)M的動(dòng)直線l(斜率存在且不為0)與曲線C交于P,Q兩點(diǎn),S(2,0),直線l1:x=-3,SP,SQ分別與l1交于A,B兩點(diǎn).A,B,P,Q坐標(biāo)分別為A(xA,yA),B(xB,yB),P(xP,yP),Q(xQ,yQ),求證:$\frac{{\frac{1}{y_A}+\frac{1}{y_B}}}{{\frac{1}{y_P}+\frac{1}{y_Q}}}$為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案