(19)在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足AE:EB=CF:FA=CP:PB=1:2(如圖1)。將△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖2)

(Ⅰ)求證:A1E⊥平面BEP;

(Ⅱ)求直線A1E與平面A1BP所成角的大。

(Ⅲ)求二面角B-A1P-F的大。ㄓ梅慈呛瘮(shù)表示)

本小題主要考查線面垂直、直線和平面所成的角、二面角等基礎(chǔ)知識,以及空間線面位置關(guān)系的證明、角和距離的計算等,考查空間想象能力、邏輯推理能力和運算能力.

 

解法一:

不妨設(shè)正三角形ABC的邊長為3.

(Ⅰ)在圖1中,取BE的中點D,連結(jié)DF.

∵AE︰EB=CF︰FA=1︰2,∴AF=AD=2,而∠A=60°,

∴△ADF是正三角形.又AE=DE=1,∴EF⊥AD.

在圖2中,A1E⊥EF,BE⊥EF,

∴∠A1EB為二面角A1-EF-B的平面角.

由題設(shè)條件知此二面角為直二面角,∴A1E⊥BE.

又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.

(Ⅱ)在圖2中,∵A1E不垂直于A1B,∴A1E是平面A1BP的斜線.

又A1E⊥平面BEP,∴A1E⊥BP,

從而BP垂直于A1E在平面A1BP內(nèi)的射影(三垂線定理的逆定理).

設(shè)A1E在平面A1BP內(nèi)的射影為A1Q,且A1Q交BP于點Q,則

∠EA1Q就是A1E與平面A1BP所成的角.

且BP⊥A1Q.

在△EBP中,∵BE=BP=2,∠EBP=60°,

∴△EBP是等邊三角形,∴BE=EP.

又A1E⊥平面BEP,∴A1B=A1P,∴Q為BP的中點,且EQ=.

又A1E=1,在Rt△A1EQ中,tan∠EA1Q=,∴∠EA1Q=60°.

所以直線A1E與平面A1BP所成的角為60°.

 

 

(Ⅲ)在圖3中,過F作FM⊥A1P于M,連結(jié)QM,QF.

∵CF=CP=1,∠C=60°,

∴△FCP是正三角形,∴PF=1.

又PQ=∴PF=PQ.        ①

∵A1E⊥平面BEP,EQ=EF=,

∴A1F=A1Q,∴△A1FP≌△A1QP,

從而∠A1PF=∠A1PQ.             ②

由①②及MP為公共邊知△FMP≌△QMP,

∴∠QMP=∠FMP=90°,且MF=MQ,

從而∠FMQ為二面角B-A1P-F的平面角.

在Rt△A1QP中,A1Q=A1F=2,PQ=1,∴A1P=

∵MQ⊥A1P,∴MQ=

在△FCQ中,F(xiàn)C=1,QC=2,∠C=60°,由余弦定理得QF=.

在△FMQ中,cos∠FMQ=

所以二面角B-A1P-F的大小為π-arccos.

解法二:不妨設(shè)正三角形ABC的邊長為3.

(Ⅰ)同解法一.

(Ⅱ)如圖1,由解法一知A1E⊥平面BEF,BE⊥EF.建立如圖4所示的空間直角坐標(biāo)系O-xyz,則E(0,0,0)、A1(0,0,1)、B(2,0,0)、F(0,,0).

 

 

在圖1中,連續(xù)DP,∴AF=BP=2,

AE=BD=1,∠A=∠B,

∴△FEA≌△PDB,PD=EF=.

由圖1知PF∥DE且PF=DE=1,∴P(1,,0).

=(2,0,-1),=(-1,,0),

∴對于平面A1BP內(nèi)任一非零向量a,存在不全為零的實數(shù)λ、μ,

使得a=(2λ-μ,μ,-λ).又=(0,0,-1),

∴cos

∵直線A1E與平面A1BP所成的角是與平面A1BP內(nèi)非零向量夾角中最小的,

∴可設(shè)λ>0,從而cos=

=4+4的最小值為4,

∴cos的最大值為,即α夾角中最小的角為60°.

所以直線A1E與平面A1BP所成的角為60°.

(Ⅲ)如圖4,過F作FM⊥A1P于M,過M作MN⊥A1P交BP于N,則∠FMN為二面角B-A1P-F的平面角.

設(shè)M(x,y,z),則

∴x+(y-)-z=0.       ①

∵A1、M、P三點共線,∴存在λ∈R,使得

=(x,y,z-1),∴(x,y,z-1)=λ(1,,-1),

從而代入①得λ=∴M().

同理可得N(),從而

∴cos

所以二面角B=A1P-F的大小為π-arccos


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(19)在三棱錐SABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2,MAB的中點.

(Ⅰ)證明:ACSB;

(Ⅱ)求二面角SCMA的大小;

(Ⅲ)求點B到平面SCM的距離.

查看答案和解析>>

同步練習(xí)冊答案