(Ⅰ)求證:A1E⊥平面BEP;
(Ⅱ)求直線A1E與平面A1BP所成角的大。
(Ⅲ)求二面角B-A1P-F的大。ㄓ梅慈呛瘮(shù)表示)
本小題主要考查線面垂直、直線和平面所成的角、二面角等基礎(chǔ)知識,以及空間線面位置關(guān)系的證明、角和距離的計算等,考查空間想象能力、邏輯推理能力和運算能力.
解法一:
不妨設(shè)正三角形ABC的邊長為3.
(Ⅰ)在圖1中,取BE的中點D,連結(jié)DF.
∵AE︰EB=CF︰FA=1︰2,∴AF=AD=2,而∠A=60°,
∴△ADF是正三角形.又AE=DE=1,∴EF⊥AD.
在圖2中,A1E⊥EF,BE⊥EF,
∴∠A1EB為二面角A1-EF-B的平面角.
由題設(shè)條件知此二面角為直二面角,∴A1E⊥BE.
又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.
(Ⅱ)在圖2中,∵A1E不垂直于A1B,∴A1E是平面A1BP的斜線.
又A1E⊥平面BEP,∴A1E⊥BP,
從而BP垂直于A1E在平面A1BP內(nèi)的射影(三垂線定理的逆定理).
設(shè)A1E在平面A1BP內(nèi)的射影為A1Q,且A1Q交BP于點Q,則
∠EA1Q就是A1E與平面A1BP所成的角.
且BP⊥A1Q.
在△EBP中,∵BE=BP=2,∠EBP=60°,
∴△EBP是等邊三角形,∴BE=EP.
又A1E⊥平面BEP,∴A1B=A1P,∴Q為BP的中點,且EQ=.
又A1E=1,在Rt△A1EQ中,tan∠EA1Q=,∴∠EA1Q=60°.
所以直線A1E與平面A1BP所成的角為60°.
(Ⅲ)在圖3中,過F作FM⊥A1P于M,連結(jié)QM,QF.
∵CF=CP=1,∠C=60°,
∴△FCP是正三角形,∴PF=1.
又PQ=∴PF=PQ. ①
∵A1E⊥平面BEP,EQ=EF=,
∴A
從而∠A1PF=∠A1PQ. ②
由①②及MP為公共邊知△FMP≌△QMP,
∴∠QMP=∠FMP=90°,且MF=MQ,
從而∠FMQ為二面角B-A1P-F的平面角.
在Rt△A1QP中,A1Q=A
∵MQ⊥A1P,∴MQ=
在△FCQ中,F(xiàn)C=1,QC=2,∠C=60°,由余弦定理得QF=.
在△FMQ中,cos∠FMQ=
所以二面角B-A1P-F的大小為π-arccos.
解法二:不妨設(shè)正三角形ABC的邊長為3.
(Ⅰ)同解法一.
(Ⅱ)如圖1,由解法一知A1E⊥平面BEF,BE⊥EF.建立如圖4所示的空間直角坐標(biāo)系O-xyz,則E(0,0,0)、A1(0,0,1)、B(2,0,0)、F(0,,0).
在圖1中,連續(xù)DP,∴AF=BP=2,
AE=BD=1,∠A=∠B,
∴△FEA≌△PDB,PD=EF=.
由圖1知PF∥DE且PF=DE=1,∴P(1,,0).
∴=(2,0,-1),=(-1,,0),
∴對于平面A1BP內(nèi)任一非零向量a,存在不全為零的實數(shù)λ、μ,
使得a=λ+μ=(2λ-μ,μ,-λ).又=(0,0,-1),
∴cos
∵直線A1E與平面A1BP所成的角是與平面A1BP內(nèi)非零向量夾角中最小的,
∴可設(shè)λ>0,從而cos=
又=4+4的最小值為4,
∴cos的最大值為,即與α夾角中最小的角為60°.
所以直線A1E與平面A1BP所成的角為60°.
(Ⅲ)如圖4,過F作FM⊥A1P于M,過M作MN⊥A1P交BP于N,則∠FMN為二面角B-A1P-F的平面角.
設(shè)M(x,y,z),則
∵
又∴x+(y-)-z=0. ①
∵A1、M、P三點共線,∴存在λ∈R,使得
∵=(x,y,z-1),∴(x,y,z-1)=λ(1,,-1),
從而代入①得λ=∴M().
同理可得N(),從而
∴cos
所以二面角B=A1P-F的大小為π-arccos
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)證明:AC⊥SB;
(Ⅱ)求二面角S—CM—A的大小;
(Ⅲ)求點B到平面SCM的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com