17.若函數(shù)$f(x)={log_3}({{x^2}+ax-a})$的值域是R,則實(shí)數(shù)a的取值范圍是(-∞,-4]∪[0,+∞).

分析 函數(shù)$f(x)={log_3}({{x^2}+ax-a})$的值域是R,其真數(shù)函數(shù)g(x)=x2+ax-a的函數(shù)值應(yīng)該能夠取遍所有正數(shù),從而函數(shù)y=g(x)的圖象應(yīng)該與x軸相交,由此能求出實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)$f(x)={log_3}({{x^2}+ax-a})$的值域是R,
∴其真數(shù)函數(shù)g(x)=x2+ax-a的函數(shù)值應(yīng)該能夠取遍所有正數(shù),
∴函數(shù)y=g(x)的圖象應(yīng)該與x軸相交
即△=a2+4a≥0
解得a≤-4或a≥0.
∴實(shí)數(shù)a的取值范圍是(-∞,-4]∪[0,+∞).
故答案為:(-∞,-4]∪[0,+∞).

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F2作傾斜角為120°的直線與橢圓的一個(gè)交點(diǎn)為M,若MF1垂直于MF2,則橢圓的離心率為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:?x∈R,cosx≤1,則命題p的否定¬p是?x∈R,cosx>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.方程lg(x2-3)=lg(3x-5)的解是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x+$\frac{a}{x}$+lnx,(a∈R),
(Ⅰ)當(dāng)a=2時(shí),求 f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a≥2時(shí),存在兩點(diǎn)(x1,f(x1)),(x2,f(x2)),使得曲線y=f(x)在這兩點(diǎn)處的切線互相平行,求證x1+x2>8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若f(x)=|log2x|-m有兩個(gè)零點(diǎn)x1,x2(x1>x2),則${x_1}^2+4{x_2}^2$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)=2x-1,且$f(m)=\frac{1}{8}$,則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)[x]表示不超過x的最大整數(shù),用數(shù)組$[{\frac{1^2}{100}}]\;,\;\;[{\frac{2^2}{100}}]\;,\;\;[{\frac{3^2}{100}}]\;,\;…\;\;,\;[{\frac{{{{100}^2}}}{100}}]$組成集合A的元素的個(gè)數(shù)是76.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對(duì)任意x∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f'(x)>f(x),則以下正確的是( 。
A.f(2015)>f(0)B.f(2015)<f(0)C.f(2015)>e2015•f(0)D.f(2015)<e2015•f(0)

查看答案和解析>>

同步練習(xí)冊(cè)答案