函數(shù)f(x)=
(
1
3
)x                    x∈(-∞   0]
(2a-1)x+(1-a)   x∈(0   +∞)
在(-∞,+∞)上是減函數(shù),則a的取值范圍是( 。
分析:由題意,此分段函數(shù)是一個(gè)減函數(shù),故一次函數(shù)系數(shù)為負(fù),且在分段點(diǎn)處,函數(shù)值應(yīng)是右側(cè)小于等于左側(cè),由此得相關(guān)不等式,即可求解
解答:解:依題意,
2a-1<0
(
1
3
)
0
≥1-a
,解得0≤a<
1
2
,
故選B.
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的性質(zhì),熟知一些基本函數(shù)的單調(diào)性是正確解對(duì)本題的關(guān)鍵,本題中有一易錯(cuò)點(diǎn),忘記驗(yàn)證分段點(diǎn)出函數(shù)值的大小驗(yàn)證,做題時(shí)要注意考慮完全.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(
1
3
)x-log2x
,若實(shí)數(shù)x0是函數(shù)的零點(diǎn),且0<x1<x0,則f(x1)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
13
)x-log2x
,正實(shí)數(shù)a、b、c成公差為正數(shù)的等差數(shù)列,且滿足f(a)f(b)f(c)<0,若實(shí)數(shù)d是方程f(x)=0的一個(gè)解,那么下列四個(gè)判斷:①d<a;②d>b;③d<c;④d>c中,有可能成立的個(gè)數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=
13
|x|3-ax2+(2-a)|x|+b
,若f(x)有六個(gè)不同的單調(diào)區(qū)間,則a的取值范圍為
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
,則f′(x)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x
(x≥0)
,若f(a)>1,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案