【題目】如圖,菱形與正所在平面互相垂直,平面,,.
(1)證明:平面;
(2)若,求直線與平面所成角的正弦值.
【答案】(1)證明過程詳見解析(2)
【解析】
(1)過點作于,由面面垂直的性質可知平面,又平面,可得,即四邊形為平行四邊形,得到線線平行,從而得到線面平行;
(2)分別以,,為軸建立空間直角坐標系,求出平面的法向量,利用線面角的向量公式進行計算即可得到答案.
解:(1)如圖,過點作于,連接EH,∴.
∵平面平面,平面,
平面平面于 ∴ 平面.
又∵平面,.∴,
∴四邊形為平行四邊形. ∴,
∵平面,平面,
∴平面.
(2)連接.由(1)得為中點,又,為等邊三角形,
∴.分別以,,為軸建立
如圖所示的空間直角坐標系.
,, ,
設平面的法向量為.
由,得
令,得.
,
直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。
(I)求應從小學、中學、大學中分別抽取的學校數(shù)目。
(II)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結果;
(2)求抽取的2所學校均為小學的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))
(1)A類工人中和B類工人各抽查多少工人?
(2)從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2:
表1:
生產(chǎn)能力分組 | |||||
人數(shù) | 4 | 8 | x | 5 | 3 |
表2:
生產(chǎn)能力分組 | ||||
人數(shù) | 6 | y | 36 | 18 |
①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)
②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)
圖1A類工人生產(chǎn)能力的頻率分布直方圖 圖2B類工人生產(chǎn)能力的頻率分布直方圖
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】各國醫(yī)療科研機構都在研制某種病毒疫苗,現(xiàn)有G,E,F三個獨立的醫(yī)療科研機構,它們在一定時期內能研制出疫苗的概率分別是.求:
(1)他們都研制出疫苗的概率;
(2)他們都失敗的概率;
(3)他們能夠研制出疫苗的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】企業(yè)需為員工繳納社會保險,繳費標準是根據(jù)職工本人上一年度月平均工資(單位:元)的繳納,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
t | 1 | 2 | 3 | 4 | 5 |
y | 270 | 330 | 390 | 460 | 550 |
某企業(yè)員工甲在2014年至2018年各年中每月所撒納的養(yǎng)老保險數(shù)額y(單位:元)與年份序號t的統(tǒng)計如下表:
(1)求出t關于t的線性回歸方程;
(2)試預測2019年該員工的月平均工資為多少元?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
(注:,,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》給出求羨除體積的“術”是:“并三廣,以深乘之,又以袤乘之,六而一”.其中的“廣”指羨除的三條平行側棱的長,“深”指一條側棱到另兩條側棱所在平面的距離,“袤”指這兩條側棱所在平行線之間的距離,用現(xiàn)代語文描述:在羨除中,,,,,兩條平行線與間的距離為,直線到平面的距離為,則該羨除的體積為.已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,定點,為圓上任意一點,線段的垂直平分線和半徑相交于點,當點在圓上運動時,點的軌跡為曲線.
(1)求曲線的方程;
(2)若過定點的直線交曲線于不同的兩點,(點在點,之間),且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對數(shù)函數(shù)g(x)=1ogax(a>0,a≠1)和指數(shù)函數(shù)f(x)=ax(a>0,a≠1)互為反函數(shù).已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(Ⅰ)若函數(shù)g(kx2+2x+1)的定義域為R,求實數(shù)k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數(shù)F(x),如果滿足:對任意x∈I,總存在常數(shù)M>0,都有-M≤F(x)≤M成立,則稱函數(shù)F(x)是I上的有界函數(shù),其中M為函數(shù)F(x)的上界.若函數(shù)h(x)=,當m≠0時,探求函數(shù)h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com