設(shè)函數(shù)f(x)=
3
cos2ωx+sinωxcosωx+α
(其中ω>0,α∈R),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
π
6

(I)求ω的值.
(II)如果f(x)在區(qū)間[-
π
3
,
6
]
上的最小值為
3
,求α的值.
(I)f(x)=
3
2
cos2ωx+
1
2
sin2ωx+
3
2

=sin(2ωx+
π
3
)+
3
2

依題意得2ω×
π
6
+
π
3
=
π
2

解之得ω=
1
2

(II)由(I)知f(x)=sin(x+
π
3
)+
3
2

又當(dāng)x∈[-
π
3
,
6
]時(shí),x+
π
3
∈[0,
6
]
故-
1
2
≤sin(x+
π
3
)≤1,
從而,f(x)在[-
π
3
,
6
]上取得最小值-
1
2
+
3
2

因此,由題設(shè)知-
1
2
+
3
2
+α=
3

解得α=
3
+1
2

答:(I)ω=
1
2
;(II)α=
3
+1
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x
,x≥0
-x
,x<0
,若f(a)+f(-1)=2,則a=(  )
A、-3B、±3C、-1D、±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
則滿f(x)=
1
4
的x的值(  )
A、只有2B、只有3
C、2或3D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=asinx-bcosx在x=
π
3
處有最小值-2,則常數(shù)a,b的值分別為
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
2
cos(ωx+φ)
,對(duì)任意x∈R都有f(
π
3
-x)
=f(
π
3
+x)
,若函數(shù)g(x)=3sin(ωx+φ)-2,則g(
π
3
)
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+?)(ω>0,0<?<
π
2
)
.若將f(x)的圖象沿x軸向右平移
1
6
個(gè)單位長(zhǎng)度,得到的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn);若將f(x)的圖象上所有的點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
倍(縱坐標(biāo)不變),得到的圖象經(jīng)過(guò)點(diǎn)(
1
6
,1)
,則(  )
A、ω=π,?=
π
6
B、ω=2π,?=
π
3
C、ω=
4
,?=
π
8
D、適合條件的ω,?不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案