【題目】某網(wǎng)絡平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學時數(shù),客戶性別等進行統(tǒng)計,整理得到如表:
學時數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計男性客戶購買該課程學時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結(jié)果保留小數(shù)點后兩位);
(2)從這100位客戶中,對購買該課程學時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學時數(shù)都不低于15的概率.
(3)將購買該課程達到25學時及以上者視為“十分愛好該課程者”,25學時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認為“十分愛好該課程者”與性別有關(guān)?
非十分愛好該課程者 | 十分愛好該課程者 | 合計 | |
男性 | |||
女性 | |||
合計 | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)平均值為.(2)
(3)見解析
【解析】
根據(jù)平均數(shù)的公式進行計算即可;
利用分層抽樣的方法,利用列舉法結(jié)合古典概型的概率公式進行計算即可;
完成
列聯(lián)表,計算
的值,利用獨立性檢驗的性質(zhì)進行判斷即可.
由題意知,在100位購買該課程的客戶中,男性客戶購買該課程學時數(shù)的平均值為
;
所以估計男性客戶購買該課程學時數(shù)的平均值為.
設“所抽取的2人購買的學時數(shù)都不低于15為事件A,
依題意按照分層抽樣的方式分別在學時數(shù)為,
,
的女性客戶中抽取1人
設為
,2人
設為A,
4人,設為
,
,
,
,從7人中隨機抽取2人所包含的基木事件為:
aA,aB,,
,
,
,AB,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共21種,
其中事件A所包含的基本事件為:,
,
,
,
,
,共6個,
則事件A發(fā)生的概率.
依題意得
列聯(lián)表如下
非十分愛好該課程者 | 十分愛好該課程者 | 合計 | |
男性 | 48 | 12 | 60 |
女性 | 16 | 24 | 40 |
合計 | 64 | 36 | 100 |
則.
故有的把握認為“十分愛好該課程者”與性別有關(guān).
科目:高中數(shù)學 來源: 題型:
【題目】“科技引領,布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動力量.2007年至2018年,某企業(yè)連續(xù)12年累計研發(fā)投入達4100億元,我們將研發(fā)投入與經(jīng)營收入的比值記為研發(fā)投入占營收比.這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營收比用圖中的折線圖表示.
根據(jù)折線圖和條形圖,下列結(jié)論錯誤的是( �。�
A. 2012﹣2013 年研發(fā)投入占營收比增量相比 2017﹣2018 年增量大
B. 該企業(yè)連續(xù) 12 年研發(fā)投入逐年增加
C. 2015﹣2016 年研發(fā)投入增值最大
D. 該企業(yè)連續(xù) 12 年研發(fā)投入占營收比逐年增加
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)若存在與函數(shù),
的圖象都相切的直線,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱柱中,側(cè)棱
底面
,
,
,
,
,
為棱
的中點.
(1)證明:;
(2)求二面角的正弦值;
(3)設點在線段
上,且直線
與平面
所成角的正弦值是
,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓
的方程為
.
(1)若圓上有兩點
,
關(guān)于直線
對稱,且
,求直線
的方程;
(2)圓與
軸相交于
,
兩點,圓內(nèi)的動點
使
,
,
成等比數(shù)列,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,點
滿足
,記點
的軌跡為
.斜率為
的直線
過點
,且與軌跡
相交于
兩點.
(1)求軌跡的方程;
(2)求斜率的取值范圍;
(3)在軸上是否存在定點
,使得無論直線
繞點
怎樣轉(zhuǎn)動,總有
成立?如果存在,求出定點
;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體,是將高為2、底面半徑為1的圓柱沿過旋轉(zhuǎn)軸的平面切開后,將其中一半沿切面向右水平平移后形成的封閉體.分別為
的中點,
為弧
的中點,
為弧
的中點.
(1)求直線與底面
所成的角的大小;
(2)求異面直線與
所成的角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:(
)的左、右焦點分別為
,
,離心率
,點
在橢圓C上,直線l過
交橢圓于A,B兩點.
(1)求橢圓C的標準方程;
(2)當時,點A在x軸上方時,求點A,B的坐標;
(3)若直線交y軸于點M,直線
交y軸于點N,是否存在直線l,使得
與
的面積滿足
,若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com