【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.

(1)求圖中的值;

(2)估計該校擔任班主任的教師月平均通話時長的中位數(shù);

(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.

【答案】(1) (2)390分鐘. (3)

【解析】

(1)根據(jù)頻率分布直方圖中所有矩形的面積和為1,列出方程,即可求解;

(2)設該校擔任班主任的教師月平均通話時長的中位數(shù)為,根據(jù)頻率分布直方圖的中位數(shù)的計算方法,即可求解.

(3)根據(jù)分層抽樣,可得在內抽取人,分別記為,在內抽取2人,記為,利用古典概型及其概率的計算公式,即可求解.

(1)依題意,根據(jù)頻率分布直方圖的性質,可得:

,解得.

(2)設該校擔任班主任的教師月平均通話時長的中位數(shù)為.

因為前2組的頻率之和為

前3組的頻率之和為,

所以,由,得.

所以該校擔任班主任的教師月平均通話時長的中位數(shù)為390分鐘.

(3)由題意,可得在內抽取人,分別記為

內抽取2人,記為

則6人中抽取2人的取法有:,,,,,,,,,,共15種等可能的取法.

其中抽取的2人恰在同一組的有,,,,,共7種取法,

所以從這6人中隨機抽取的2人恰在同一組的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)的極值點.

(Ⅰ)求實數(shù)的值;

(Ⅱ)求證:函數(shù)存在唯一的極小值點,且.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知橢圓的離心率為,左、右焦點分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點在橢圓.

)求橢圓的方程;

)設橢圓,為橢圓上任意一點,過點的直線交橢圓兩點,射線交橢圓于點.

i)求的值;

(ⅱ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

(1)若,命題“pq”為真,求實數(shù)的取值范圍;

(2)若 的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某游戲公司對今年新開發(fā)的一些游戲進行評測,為了了解玩家對游戲的體驗感,研究人員隨機調查了300名玩家,對他們的游戲體驗感進行測評,并將所得數(shù)據(jù)統(tǒng)計如圖所示,其中.

1)求這300名玩家測評分數(shù)的平均數(shù);

2)由于該公司近年來生產的游戲體驗感較差,公司計劃聘請3位游戲專家對游戲進行初測,如果3人中有2人或3人認為游戲需要改進,則公司將回收該款游戲進行改進;若3人中僅1人認為游戲需要改進,則公司將另外聘請2位專家二測,二測時,2人中至少有1人認為游戲需要改進的話,公司則將對該款游戲進行回收改進.已知該公司每款游戲被每位專家認為需要改進的概率為,且每款游戲之間改進與否相互獨立.

i)對該公司的任意一款游戲進行檢測,求該款游戲需要改進的概率;

ii)每款游戲聘請專家測試的費用均為300/人,今年所有游戲的研發(fā)總費用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進行檢測,假設公司的預算為110萬元,判斷這600款游戲所需的最高費用是否超過預算,并通過計算說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是兩條異面直線,直線都垂直,則下列說法正確的是( )

A. 平面,則

B. 平面,則,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】東海水晶制品廠去年的年產量為10萬件,每件水晶產品的銷售價格為100元,固定成本為80.從今年起,工廠投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本.預計產量每年遞增1萬件,每件水晶產品的固定成本與科技成本的投入次數(shù)的關系是=.若水晶產品的銷售價格不變,次投入后的年利潤為萬元.①求出的表達式;問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)設,曲線在點處的切線在軸上的截距為,求的最小值;

(Ⅱ)若只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,

,求函數(shù)的單調區(qū)間,并求出其極值;

若函數(shù)存在兩個零點,k的取值范圍.

查看答案和解析>>

同步練習冊答案