【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)系中,過點的直線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于不同的兩點,.

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求實數(shù)的值.

【答案】(1);(2).

【解析】分析:(1)先根據(jù)加減消元得直線的普通方程;根據(jù)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,(2)先將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,利用參數(shù)幾何意義以及韋達定理得實數(shù)的值.

詳解:(1)∵為參數(shù)),

∴直線的普通方程為.

,∴

得曲線的直角坐標(biāo)方程為.

(2)∵,∴,

設(shè)直線上的點對應(yīng)的參數(shù)分別是,

,

,∴,∴,

,代入,得,

,

又∵,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列四個命題中,其中真命題是( )

,的逆命題;

,的否命題;

,則方程有實根的逆否命題;

等邊三角形的三個內(nèi)角均為的逆命題.

A. ①② B. ①②③④ C. ②③④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中在今年的期末考試歷史成績中隨機抽取名考生的筆試成績,作出其頻率分布直方圖如圖所示,已知成績在中的學(xué)生有1名,若從成績在兩組的所有學(xué)生中任取2名進行問卷調(diào)查,則2名學(xué)生的成績都在中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有、、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎情況預(yù)測如下.

甲說:“、同時獲獎.”

乙說:“、不可能同時獲獎.”

丙說:“獲獎.”

丁說:“至少一件獲獎”

如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測是正確的,則獲獎的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果對定義在R上的函數(shù),對任意兩個不相等的實數(shù)都有

以上函數(shù)是的所有序號為_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)。

1)求函數(shù)的單調(diào)減區(qū)間;

2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為4,動點E,F在棱上,動點P,Q分別在棱AD,CD上。若,,大于零),則四面體PEFQ的體積

A.都有關(guān)B.m有關(guān),與無關(guān)

C.p有關(guān),與無關(guān)D.π有關(guān),與無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的解析式;

(2)試判斷的單調(diào)性,并用定義法證明;

3)若存在,使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案