如圖,在四棱錐中,側(cè)棱底面,底面為矩形,,的上一點,且為PC的中點.

(Ⅰ)求證:平面AEC;

(Ⅱ)求二面角的余弦值.

 

【答案】

(Ⅰ)利用直線的向量與平面的法向量垂直證明線面平行,(Ⅱ)

【解析】

試題分析:建立如圖所示空間直角坐標(biāo)系,設(shè),則,,

(Ⅰ)設(shè)平面AEC的一個法向量為,∵,

,令,得,又

,平面AEC∴平面AEC

(Ⅱ)由(Ⅰ)知平面AEC的一個法向量為,

為平面ACD的法向量,而,

故二面角的余弦值為

考點:本題考查了空間中的線面關(guān)系及二面角的求法

點評:立體幾何問題主要是探求和證明空間幾何體中的平行和垂直關(guān)系以及空間角、體積等計算問題.對于平行和垂直問題的證明或探求,其關(guān)鍵是把線線、線面、面面之間的關(guān)系進行靈活的轉(zhuǎn)化.在尋找解題思路時,不妨采用分析法,從要求證的結(jié)論逐步逆推到已知條件.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三開學(xué)檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐中,側(cè)棱底面,底面為矩形,上一點,

(I)若的中點,求證平面;

(II)求三棱錐的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三開學(xué)檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐中,側(cè)棱底面,底面為矩形,上一點,,

(I)若的中點,求證平面

(II)求三棱錐的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省豫南九校高三第四次聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

如圖,在四棱錐中,側(cè)棱底面,底面為矩形,,的上一點,且,PC的中點.

(Ⅰ)求證:平面AEC

(Ⅱ)求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年吉林省吉林市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

((本小題滿分12分)

如圖,在四棱錐中,側(cè)棱底面,底面為矩形,

,的上一點,且,PC的中點.

(Ⅰ)求證:平面AEC

(Ⅱ)求二面角的余弦值.

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案