精英家教網 > 高中數學 > 題目詳情

如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥平面ABCD,SD=AD=2,請建立空間直角坐標系解決下列問題.

(1)求證:;(2)求直線與平面所成角的正弦值.

 

【答案】

(1)詳見解析;(2)

【解析】

試題分析:(1) 建立以為坐標原點,所在的直線分別為軸的空間直角坐標系,寫出的坐標,計算其數量積即可證明垂直;(2)取平面的法向量,利用向量的數量積,計算向量的夾角,轉化為線面角.

試題解析:(1)建立以為坐標原點,所在的直線分別為軸的空間直角坐標系,

,,,

,,

,

(2)取平面ADS的一個法向量為,則

,

所以直線與平面所成角的正弦值為

考點:本題主要考查了空間向量在立體幾何中的應用.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC⊥平面SBC.
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,四棱錐S-ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=3
3
,點E、G分別在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)證明平面BG∥平面SDE;
(2)求面SAD與面SBC所成二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點,AD=2,AB=1.SP與平面ABCD所成角為
π4
. 
(1)求證:平面SPD⊥平面SAP;
(2)求三棱錐S-APD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點,且SE=2EC,SA=6,AB=2.
(1)求證:平面EBD⊥平面SAC;
(2)求三棱錐E-BCD的體積V.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
(1)求證:四邊形ABCD是直角梯形;
(2)求異面直線SB與CD所成角的大;
(3)求直線AC與平面SAB所成角的大。

查看答案和解析>>

同步練習冊答案