根據(jù)下列條件,求中心在原點,對稱軸在坐標(biāo)軸上的橢圓方程.
(1)長軸長是短軸長的兩倍,且過(2,-6);
(2)在x軸上一個焦點與短軸的兩端點連線互相垂直,且焦距為6.
科目:高中數(shù)學(xué) 來源:高二數(shù)學(xué) 教學(xué)與測試 題型:044
根據(jù)下列條件,求中心在原點、對稱軸在坐標(biāo)軸上的橢圓方程.
(1)離心率為0.6,一條準(zhǔn)線的方程為x=;
(2)在x軸上的一個焦點與短軸兩端點的連線互相垂直,且此焦點與長軸上較近端點的距離為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高二數(shù)學(xué) 教學(xué)與測試 題型:044
根據(jù)下列條件,求中心在原點,實軸、虛軸在坐標(biāo)軸上的雙曲線方程.
(1)焦點為(±5,0)且過點(,-3);
(2)P(0,6)與兩個焦點連線互相垂直,與兩個頂點連線夾角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:成功之路·突破重點線·數(shù)學(xué)(學(xué)生用書) 題型:044
根據(jù)下列條件分別求橢圓的方程:
(1)中心在原點,對稱軸為坐標(biāo)軸,離心率為,長軸為8.
(2)和橢圓9x2+4y2=36有相同的焦點,且經(jīng)過Q(2,-3).
(3)中心在原點,焦點在x軸上,從一個焦點看短軸兩個端點的視角為直角,且這個焦點到長軸上較近的頂點的距離為-.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心在原點,焦點在坐標(biāo)軸上,分別根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程.
(1)長軸、短軸長之比為2∶1,一條準(zhǔn)線為x+4=0;
(2)離心率為,一條準(zhǔn)線為y=3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com