【題目】已知命題p:方程 =1表示焦點在y軸上的橢圓;命題q:雙曲線 =1的離心率e∈(1,2).若命題p、q有且只有一個為真,求m的取值范圍.

【答案】解:將方程 改寫為 , 只有當(dāng)1﹣m>2m>0,即 時,方程表示的曲線是焦點在y軸上的橢圓,所以命題p等價于 ;
因為雙曲線 的離心率e∈(1,2),
所以m>0,且1 ,解得0<m<15,
所以命題q等價于0<m<15;
若p真q假,則m∈;
若p假q真,則
綜上:m的取值范圍為[ ,15)
【解析】根據(jù)題意求出命題p、q為真時m的范圍分別為0<m< 、0<m<15.由p、q有且只有一個為真得p真q假,或p假q真,進而求出答案即可.
【考點精析】認真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系),還要掌握橢圓的標準方程(橢圓標準方程焦點在x軸:,焦點在y軸:)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00﹣22:00時間段的休閑方式與性別的關(guān)系,隨機調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

看書

合計

10

50

60

10

10

20

合計

20

60

80


(1)根據(jù)以上數(shù)據(jù),能否有99%的把握認為“在20:00﹣22:00時間段居民的休閑方式與性別有關(guān)系”?
(2)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X.求X的數(shù)學(xué)期望和方差.

P(X2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

附:X2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分已知中心在原點,焦點在軸上的橢圓C的離心率為,且經(jīng)過點

1求橢圓C的方程;

2是否存在過點的直線與橢圓C相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:x+my+1=0和l2:(m﹣3)x﹣2y+(13﹣7m)=0.
(1)若l1⊥l2 , 求實數(shù)m的值;
(2)若l1∥l2 , 求l1與l2之間的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB,現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.

(1)若BE=3,求幾何體BEC﹣AFD的體積;
(2)求三棱錐A﹣CDF的體積的最大值,并求此時二面角A﹣CD﹣E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為, 是橢圓上的一個點.

(1)求橢圓的標準方程;

(2)設(shè)橢圓的上、下頂點分別為 )是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,記長方體ABCD﹣A1B1C1D1被平行于棱B1C1的平面EFGH截去右上部分后剩下的幾何體為Ω,則下列結(jié)論中不正確的是(

A.EH∥FG
B.四邊形EFGH是平行四邊形
C.Ω是棱柱
D.Ω是棱臺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個簡單幾何體的主視圖,左視圖如圖所示,則其俯視圖不可能為( ) .

A.長方形
B.直角三角形
C.圓
D.橢圓

查看答案和解析>>

同步練習(xí)冊答案