已知橢圓C1的離心率為e,且b,e,為等比數(shù)列,曲線y=8-x2恰好過橢圓的焦點.
(1)求橢圓C1的方程;
(2)設(shè)雙曲線C2的頂點和焦點分別是橢圓C1的焦點和頂點,設(shè)O為坐標原點,點A,B分別是C1和C2上的點,問是否存在A,B滿足.請說明理由.若存在,請求出直線AB的方程.
【答案】分析:(1)先確定c的值,再利用b,e,為等比數(shù)列,結(jié)合a2=b2+c2,求出幾何量,即可得到橢圓C1的方程;
(2)假設(shè)存在A,B滿足,則O,A,B三點共線且A,B不在y軸上,設(shè)出直線方程與橢圓、雙曲線聯(lián)立,利用共線得到k的方程,即可得到結(jié)論.
解答:解:(1)由y=8-x2=0可得x=
∴橢圓的焦點坐標為(,0),即c=
∵b,e,為等比數(shù)列,

∵a2=b2+c2

∴橢圓C1的方程為;
(2)假設(shè)存在A,B滿足,則O,A,B三點共線且A,B不在y軸上,
設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx
由(1)知,C2的方程為
直線與橢圓方程聯(lián)立,可得(1+3k2)x2=12,即=
直線方程與雙曲線方程聯(lián)立,可得(1-2k2)x2=8,即
,∴



∴存在A,B滿足,此時直線AB的方程為
點評:本題考查橢圓的標準方程,考查向量知識的運用,考查直線與橢圓、雙曲線的位置關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.

(1)求橢圓C1的方程;

(ll)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;

(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省模擬題 題型:解答題

已知橢圓C1的離心率為,直線l:y=x+2與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切,
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省模擬題 題型:解答題

已知橢圓C1的離心率為,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切。    
(Ⅰ)求橢圓C1的方程;  
(Ⅱ)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;   
 (Ⅲ)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市如皋中學(xué)高二(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C1的離心率為,一個焦點坐標為
(1)求橢圓C1的方程;
(2)點N是橢圓的左頂點,點P是橢圓C1上不同于點N的任意一點,連接
NP并延長交橢圓右準線與點T,求的取值范圍;
(3)設(shè)曲線與y軸的交點為M,過M作兩條互相垂直的直線與曲線C2、橢圓C1相交于點A、D和B、E,(如圖),記△MAB、
△MDE的面積分別是S1,S2,當時,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案