精英家教網(wǎng)如圖,已知⊙O和⊙O1內(nèi)切于點(diǎn)A,⊙O的弦AP交⊙O1于點(diǎn)B,PC切⊙O1于點(diǎn)C,且
PC
PA
=
2
2
,則⊙O1和⊙O的半徑的比值為多少?
分析:根據(jù)同圓的半徑相等,得到兩個(gè)頂角相等的等腰三角形,得到兩條線(xiàn)段平行,根據(jù)平行線(xiàn)分線(xiàn)段成比例定理,得到比例式,又根據(jù)切割線(xiàn)定理得到關(guān)系式,把整理出的關(guān)系式兩邊同時(shí)除以PA2,得到要求的結(jié)果.
解答:精英家教網(wǎng)解:連接OP、OA、O1B,△OPA和△O1BA是頂角相等的等腰三角形,
故∠APO=∠ABO1,從而O1B∥OP
AO1
AO
=
AB
AP

又由切割線(xiàn)定理,知PC2=PB•PA=(PA-AB)•PA=PA2-PA•AB,兩端同除以PA2,
PC2
PA2
=1-
AB
PA
,
即(
2
2
2=1-
AB
PA

AB
PA
=
1
2
,
從而⊙O1和⊙O的半徑的比值為
AO1
AO
=
AB
AP
=
1
2

答:⊙O1和⊙O的半徑的比值為
1
2
點(diǎn)評(píng):本題考查平行線(xiàn)分線(xiàn)段成比例定理,解題的關(guān)鍵是兩個(gè)比例式之間的變化,還有兩邊同時(shí)除以PA2的做法,本題是一個(gè)技巧性比較強(qiáng)的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O和⊙M相交于A、B兩點(diǎn),AD為⊙M的直徑,直線(xiàn)BD交⊙O于點(diǎn)C,點(diǎn)G為BD中點(diǎn),連接AG分別交⊙O、BD于點(diǎn)E、F連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:
GF
AG
=
EF2
CE2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)春一模)請(qǐng)考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.
如圖,已知⊙O和⊙M相交于A、B兩點(diǎn),AD為⊙M的直徑,直線(xiàn)BD交⊙O于點(diǎn)C,點(diǎn)G為
BD
中點(diǎn),連接AG分別交⊙O、BD于點(diǎn)E、F,連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:
GF
AG
=
EF2
CE2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新疆烏魯木齊一中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知⊙O和⊙M相交于A、B兩點(diǎn),AD為⊙M的直徑,直線(xiàn)BD交⊙O于點(diǎn)C,點(diǎn)G為BD中點(diǎn),連接AG分別交⊙O、BD于點(diǎn)E、F連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年河南省鄭州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,已知⊙O和⊙M相交于A、B兩點(diǎn),AD為⊙M的直徑,直線(xiàn)BD交⊙O于點(diǎn)C,點(diǎn)G為BD中點(diǎn),連接AG分別交⊙O、BD于點(diǎn)E、F連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年河南省鄭州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

如圖,已知⊙O和⊙M相交于A、B兩點(diǎn),AD為⊙M的直徑,直線(xiàn)BD交⊙O于點(diǎn)C,點(diǎn)G為BD中點(diǎn),連接AG分別交⊙O、BD于點(diǎn)E、F連接CE.
(1)求證:AG•EF=CE•GD;
(2)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案