如圖,平面AC⊥平面AE,且四邊形ABCD與四邊形ABEF都是正方形,則異面直線AC與BF所成角的大小是______.
以A為坐標(biāo)原點,AF,AB,AD方向分別為X,Y,Z軸正方向建立空間坐標(biāo)系
設(shè)正方形ABCD與正方形ABEF的邊長均為1
則A(0,0,0),B(0,1,0),C(0,1,1),F(xiàn)(1,0,0)
AC
=(0,1,1),
BF
=(1,-1,0)
設(shè)異面直線AC與BF所成角為θ,
則cosθ=|
AC
BF
|
AC
|•|
BF
|
|=
1
2

∴θ=60°
故答案為:60°
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

文(12分)已知四棱錐P-ABCD,PB⊥AD,側(cè)面PAD為邊長等于2的正三角形,底面ABCD為菱形,側(cè)面PAD與底面ABCD所成的二面角為120°.(1)求點P到平面ABCD的距離;(2)求PD與AB所成角的大;(3)求二面角A—PB—C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱柱ABC-A1B1
C1
中,AA1與AC、AB所成角均為60°,∠BAC=90°,且AB=AC=AA1,則A1B與AC1所成角的余弦值為( 。
A.1B.-1C.
3
3
D.-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在棱長為a的正方體ABCD-A1B1C1D1中,M為A1D中點,N為AC中點.
(1)求異面直線MN和AB所成的角;
(2)求點M到平面BB1D1D之距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A、B、C是球O的球面上三點,∠BAC=90°,AB=2,BC=4,球O的表面積為48π,則異面直線AB與OC所成角余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正三棱柱ABC-A1B1C1中,若AB=
2
BB1
,則AB1與C1B所成的角的大小______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A,B,C,D為空間四點,△ABC是等腰三角形,且∠ACB=90°,△ADB是等邊三角形.則AB與CD所成角的大小為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正四面體ABCD的棱長為a,點O是△BCD的中心,點M是CD中點.
(1)求點A到面BCD的距離;
(2)求AB與面BCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案