3.已知A,D分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點(diǎn)和上頂點(diǎn),點(diǎn)P是線段AD上的任意一點(diǎn),點(diǎn)F1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,最小值是-$\frac{11}{5}$,則橢圓的標(biāo)準(zhǔn)方程$\frac{{x}^{2}}{4}$+y2=1.

分析 由題意$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,可得a2-c2=1,即b=1,利用$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的是最小值是-$\frac{11}{5}$,解得a,b,即可求橢圓方程.

解答 解:由題意$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,可得a2-c2=1,即b=1,
∴AD的方程為y=$\frac{x}{a}$+1,
設(shè)P(x,y)(-a≤x≤0),
則$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=(x+c,y)•(x-c,y)=x2-c2+y2=(1+$\frac{1}{{a}^{2}}$)(x+$\frac{a}{1+{a}^{2}}$)2-$\frac{{a}^{4}-{a}^{2}-1}{1+{a}^{2}}$
∵$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值是-$\frac{11}{5}$,
∴-$\frac{{a}^{4}-{a}^{2}-1}{1+{a}^{2}}$=-$\frac{11}{5}$,
∴a=2,b=1,
所求的橢圓的方程為:$\frac{{x}^{2}}{4}$+y2=1.
故答案為:$\frac{{x}^{2}}{4}$+y2=1.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、向量的數(shù)量積的坐標(biāo)表示,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=lg($\sqrt{{x}^{2}+1}$-x)
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=xlnx的單調(diào)減區(qū)間是(0,$\frac{1}{e}$),函數(shù)y=8x2-lnx的單調(diào)增區(qū)間是($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算下列各式的值:
(1)$\root{3}{{{{(-4)}^3}}}-{(\frac{1}{2})^0}+{0.25^{\frac{1}{2}}}×{(\sqrt{2})^4}+{2^{2+{{log}_2}5}}$
(2)1+$\frac{1}{2}lg0.04-\frac{1}{3}$lg8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)全集U=R,函數(shù)f(x)=$\sqrt{x-a}$+lg(a+3-x)的定義域?yàn)榧螦,集合$B=\left\{{x|\frac{1}{4}≤{2^x}≤32}\right\}$.
(1)若a=-3,求A∩B;
(2)若A⊆∁UB,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+2)=f(x-2),且當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)至少有2個(gè)不同的實(shí)數(shù)根,至多有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(  )
A.(1,2)B.(2,+∞)C.$({1,\root{3}{4}})$D.$[{\root{3}{4},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)集合U=R,A={x|4≤2x<16},B={x|x≥3}.
(Ⅰ)求:A∩B,(∁UA)∩B;
(Ⅱ)設(shè)集合C={x|5-a<x<a},若C⊆(A∪B),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大$\frac{2a}{3}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若過曲線f(x)=xlnx上的點(diǎn)P的切線斜率為2,則點(diǎn)P的坐標(biāo)為(e,e).

查看答案和解析>>

同步練習(xí)冊(cè)答案