某廠生產(chǎn)某種產(chǎn)品件的總成本(萬元),又知產(chǎn)品單價(jià)的平方與產(chǎn)品件數(shù)成反比,生產(chǎn)100件這樣的產(chǎn)品的單價(jià)為50萬元,則產(chǎn)量定為_____________時(shí)總利潤最大?

 

【答案】

25

【解析】設(shè)產(chǎn)品單價(jià)為,則,所以總利潤滿足:

因此令時(shí),總利潤最小

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=
1
3
x2+10x
(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+
10000
x
-1450
(萬元).現(xiàn)已知此商品每件售價(jià)為500元,且該廠年內(nèi)生產(chǎn)此商品能全部銷售完.
(1)寫出年利潤L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)為2500元,已知每生產(chǎn)x件這樣的產(chǎn)品需要再增加可變成本C(x)=200x+
136
x3
(元),若生產(chǎn)出的產(chǎn)品都能以每件500元售出,要使利潤最大,該廠應(yīng)生產(chǎn)多少件這種產(chǎn)品?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆湖北省高三12月月考理科數(shù)學(xué)試卷 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),年

產(chǎn)量不足80千件時(shí),C(x)=2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí),

C(x)=51x-1450(萬元).通過市場分析,若每件售價(jià)為500元時(shí),該廠當(dāng)年生產(chǎn)

的該產(chǎn)品能全部銷售完.

(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時(shí),該廠在這一產(chǎn)品的生產(chǎn)中所獲利潤最大,最大利潤是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(13分)某廠生產(chǎn)某種產(chǎn)品件的總成本(萬元),已知產(chǎn)品單價(jià)的平方與產(chǎn)品件數(shù)成反比,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬元,產(chǎn)量定為多少時(shí)總利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案