(2012•安慶模擬)已知數(shù)列{an} 中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4,…)
(1)求a3、a4的值;
(2)設(shè)bn=
1
an+1
-1
(n∈N*),試用bn表示bn+1并求{bn} 的通項(xiàng)公式;
(3)設(shè)cn=
sin3
cosbn•cosbn+1
(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn
分析:(1)由數(shù)列{an} 中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4,…),分別令n=2和n=3,能求出a3、a4的值.
(2)當(dāng)n≥2時(shí),
1
an+1
-1=
n-an
(n-1)an
-1=
n(1-an)
(n-1)an
=
n
n-1
(
1
an
-1)
,故當(dāng)n≥2時(shí),bn=
n
n-1
bn-1
,所以bn+1=
n+1
n
bn,n∈N*
,由累乘法能用bn表示bn+1并求出{bn} 的通項(xiàng)公式.
(3)由cn=
sin3
cosbn•cosbn+1
=tan(3n+3)-tan3n,能求出數(shù)列{cn}的前n項(xiàng)和Sn
解答:解:(1)∵數(shù)列{an} 中,a1=1,a2=
1
4
,
an+1=
(n-1)an
n-an
(n=2,3,4,…),
a3=
(2-1)a2
2-a2
=
1
4
2-
1
4
=
1
7
,
a4=
(3-1)a3
3-a3
=
1
7
3-
1
7
=
1
10
,
a3=
1
7
a4=
1
10
.…(3分)
(2)當(dāng)n≥2時(shí),
1
an+1
-1=
n-an
(n-1)an
-1=
n(1-an)
(n-1)an
=
n
n-1
(
1
an
-1)

∴當(dāng)n≥2時(shí),bn=
n
n-1
bn-1

bn+1=
n+1
n
bn,n∈N*

累乘得bn=nb1,
∵b1=3,∴bn=3n,n∈N*.…(8分)
(3)∵cn=
sin3
cosbn•cosbn+1

=
sin(3n+3-3n)
cos(3n+3)•cos3n
=tan(3n+3)-tan3n
,
∴Sn=c1+c2+…+cn
=(tan6-tan3)+(tan9-tan6)+…+(tan(3n+3)-tan3n)
=tan(3n+3)-tan3.…(13分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意累積法和裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶模擬)若實(shí)數(shù)x,y滿足不等式組
x-2≤0
y-1≤0
x+2y-a≥0
目標(biāo)函數(shù)t=x-2y的最大值為2,則實(shí)數(shù)a的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶模擬)下列四種說(shuō)法中,錯(cuò)誤的個(gè)數(shù)是( 。
①A={0,1}的子集有3個(gè);
②“若am2<bm2,則a<b”的逆命題為真;
③“命題p∨q為真”是“命題p∧q為真”的必要不充分條件;
④命題“?x∈R,均有x2-3x-2≥0”的否定是:“?x∈R,使得x2-3x-2≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶模擬)如圖是一個(gè)組合幾何體的三視圖,則該幾何體的體積是
π+
3
3
π+
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶模擬)設(shè)函數(shù)f(x)=cos
x
4
(sin
x
4
+cos
x
4
)-
1
2

(Ⅰ)求函數(shù)y=f(x)取最值時(shí)x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的對(duì)邊分別是a,b,c,且滿(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶模擬)集合A={x|y=x
1
2
},B={y|y=log2x,x∈R},則A∩B
等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案