已知(1+2n展開式中,某一項的系數(shù)恰好是它的前一項系數(shù)的2倍,而等于它后一項系數(shù)的,試求該展開式中二項式系數(shù)最大的項。

 

答案:
解析:

設(shè)第r+1項系數(shù),第r項系數(shù),第r+2項系數(shù)為,由題意得

    化簡得

    解得  n=7.

故二項式系數(shù)最大的項是第4項及第5項.

   

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+2
3x
)n
的展開式中,某一項的系數(shù)是它前一項系數(shù)的2倍,而又等于它后一項系數(shù)的
5
6
,
(Ⅰ)求展開后所有項系數(shù)之和及所有項的二項式系數(shù)之和;
(Ⅱ)求展開式中的有理項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時,證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+2
x
)n
的展開式中,某一項的系數(shù)是它前一項系數(shù)的2倍,而又等于它后一項系數(shù)的
5
6

(1)求展開后所有項的系數(shù)之和及所有項的二項式系數(shù)之和;
(2)求展開式中的有理項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時,證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年廣東省廣州89中學(xué)高一(上)期末數(shù)學(xué)復(fù)習(xí)試卷(必修1、2)(解析版) 題型:解答題

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時,證明:CD∥平面BMN

查看答案和解析>>

同步練習(xí)冊答案