12.已知函數(shù)f(x)=ax3-3x的圖象過點(-1,4),則實數(shù)a=( 。
A.-2B.1C.-1D.2

分析 根據(jù)函數(shù)圖象和點的坐標之間的關系進行求解.

解答 解:∵函數(shù)f(x)=ax3-3x的圖象過點(-1,4),
∴f(-1)=-a+3=4,
解得a=-1,
故選:C

點評 本題主要考查點的坐標與函數(shù)之間的關系,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知a=9${\;}^{\frac{1}{3}}$,b=3${\;}^{\frac{2}{5}}$,c=4${\;}^{\frac{1}{5}}$,則( 。
A.b<a<cB.a>b>cC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$中,滿足a2+b2-3c2=0,c是半焦距,則$\frac{a+c}{a-c}$=( 。
A.$3+2\sqrt{2}$B.$3+\sqrt{2}$C.$2+\sqrt{2}$D.$2+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和Sn和通項an滿足2Sn+an=1,數(shù)列{bn}中,b1=1,b2=$\frac{1}{2}$,$\frac{2}{_{n+1}}$=$\frac{1}{_{n}}$+$\frac{1}{_{n+2}}$(n∈N*
(1)求數(shù)列{an},{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=$\frac{a_n}{b_n}$,Tn=c1+c2+c3+…cn是否存在m使Tn≥$\frac{3}{4}$-m恒成立,若存在求出m的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點為A,右焦點為F2,過點F2作垂直于x軸的直線交該橢圓于M、N兩點,直線AM的斜率為$\frac{1}{2}$.
(1)求橢圓Γ的離心率;
(2)若△AMN的外接圓在點M處的切線與橢圓交于另一點D,△F2MD的面積為$\frac{6}{7}$,求橢圓Γ的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知f(x)=2x3+ax2+b-2是奇函數(shù),則ab=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓O經過三點A(0,0),B(1,1),C(4,2);
(1)求該圓的方程;
(2)求過點D(2,0)的最短弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,已知cosB=$\frac{3}{5}$,sinC=$\frac{2}{3}$,AC=2,那么邊AB等于( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{20}{9}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若三點A(0,8),B(-4,0),C(m,-4)共線,則實數(shù)m的值是(  )
A.6B.-2C.-6D.2

查看答案和解析>>

同步練習冊答案