(14分)設(shè) 
(1)若是函數(shù)的極大值點(diǎn),求的取值范圍;
(2)當(dāng)時(shí),若在上至少存在一點(diǎn),使成立,求的取值范圍。
(1)
(2)


(2分)
當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

綜上所述,當(dāng),即時(shí),是函數(shù)的極大值點(diǎn).(7分)
(2)在上至少存在一點(diǎn),使成立,等價(jià)于
當(dāng)時(shí), .            (9分)
由(1)知,①當(dāng),即時(shí),
函數(shù)上遞減,在上遞增,

,解得
,解得
,    ;       (12分)
②當(dāng),即時(shí),函數(shù)上遞增,在上遞減,

綜上所述,當(dāng)時(shí),在上至少存在一點(diǎn),使成立.(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(a,O)( a >0),Bx軸負(fù)半軸上的動(dòng)點(diǎn).以AB為邊作菱形ABCD,使其兩對角線的交點(diǎn)恰好落在y軸上.
(I)求動(dòng)點(diǎn)D的軌跡E的方程;
(Ⅱ)過點(diǎn)A作直線l與軌跡E交于P、Q兩點(diǎn),設(shè)點(diǎn)R (- a,0),問當(dāng)l繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),∠PRQ是否可以為鈍角?請給出結(jié)論,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前n項(xiàng)和滿足:(a為常數(shù),且). (Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè),若數(shù)列為等比數(shù)列,求a的值;
(Ⅲ)在滿足條件(Ⅱ)的情形下,設(shè),數(shù)列的前n項(xiàng)和為Tn .
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市空調(diào)公共汽車的票價(jià)按下列規(guī)則制定:
(1)5公里以內(nèi),票價(jià)2元;
(2)5公里以上,每增加5公里,票價(jià)增加1元(不足5公里的按5公里算).
已知兩個(gè)相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點(diǎn)和終點(diǎn)站)有21個(gè)汽車站,請根據(jù)題意,寫出票價(jià)與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)。
(1)證明:;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某化工廠生產(chǎn)一種溶液,按市場要求,雜質(zhì)含量不超過,若初時(shí)含雜質(zhì),每過濾一次可使雜質(zhì)含量減少,問至少應(yīng)過濾幾次才能使產(chǎn)品達(dá)到市場要求?(已知

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在矩形ABCD中,已知AB=a,BC=b(b<a),在AB,AD,CD,CB上分別截取AE,AH,CG,CF都等于x,當(dāng)x為何值時(shí),四邊形EFGH的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

把一個(gè)長、寬、高分別為25 cm、20 cm、5 cm的長方體木盒從一個(gè)正方形窗口穿過,那么正方形窗口的邊長至少應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)時(shí),,則下列大小關(guān)系正確的是(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案