已知橢圓C:的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點.
①若線段AB中點的橫坐標為,求斜率k的值;
②已知點,求證:為定值.
【答案】分析:(1)根據(jù)橢圓的離心率,三角形的面積及橢圓幾何量之間的關(guān)系,建立等式,即可求得橢圓的標準方程;
(2)①直線方程代入橢圓方程,利用韋達定理及線段AB中點的橫坐標為,即可求斜率k的值;
②利用韋達定理,及向量的數(shù)量積公式,計算即可證得結(jié)論.
解答:(1)解:因為滿足a2=b2+c2,,…(2分)
根據(jù)橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為,可得
從而可解得,
所以橢圓方程為…(4分)
(2)證明:①將y=k(x+1)代入中,消元得(1+3k2)x2+6k2x+3k2-5=0…(6分)
△=36k4-4(3k2+1)(3k2-5)=48k2+20>0,…(7分)
因為AB中點的橫坐標為,所以,解得…(9分)
②由①知
所以…(11分)
==…(12分)
===…(14分)
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查向量的數(shù)量積,考查學生的運算能力,綜合性強.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

科目:高中數(shù)學 來源:2009年廣東省廣州市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點
(1)求橢圓C的方程;
(2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學理卷 題型:選擇題

已知橢圓C:的離心率為,過右焦點且斜率為的直線與橢圓C相交于、兩點.若,則 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二第一學期期末考試文科數(shù)學 題型:解答題

(本小題滿分12分)

已知橢圓C:,它的離心率為.直線與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年吉林一中高二下學期第一次月考數(shù)學文卷 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設直線與橢圓C交于,兩點,點,且,求直線的方程.

 

查看答案和解析>>

同步練習冊答案