如圖(1)所示,⊙O的直徑AB=4,點C,D為⊙O上兩點,且∠CAB=45°,∠DAB=60°,F(xiàn)為的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直(如圖(2)所示).
 
(1)求證:OF∥平面ACD;
(2)在上是否存在點G,使得FG∥平面ACD?若存在,試指出點G的位置,并求點G到平面ACD的距離;若不存在,請說明理由.

(1)見解析(2)存在,h=

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,垂直于矩形所在平面,,

(1)求證:;
(2)若矩形的一個邊,,則另一邊的長為何值時,三棱錐的體積為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,直三棱柱ABCA1B1C1中,D,E分別是AB,BB1的中點.

(1)證明:BC1∥平面A1CD;
(2)設(shè)AA1=AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(1)證明:AD⊥C1E;
(2)當異面直線AC,C1E所成的角為60°時,求三棱錐C1A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為圓的直徑,點在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且,.

(1)設(shè)的中點為,求證:平面;
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC ­A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點.

(1)證明:平面AEB⊥平面BB1C1C;
(2)證明:C1F∥平面ABE;
(3)設(shè)P是BE的中點,求三棱錐P ­B1C1F的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線EF把四邊形CDFE折起如圖b,使平面CDFE⊥平面ABEF.

(1)求證:AB⊥平面BCE;
(2)求三棱錐C ­ADE體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正三棱柱ABC—A1B1C1的各棱長都相等,M、E分別是和AB1的中點,點F在BC上且滿足BF∶FC=1∶3.

(1)求證:BB1∥平面EFM;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,則四棱錐A-BB1D1D的體積為    cm3.

查看答案和解析>>

同步練習(xí)冊答案