精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=3+sinwx-(w>0)在一個周期內的圖象如圖所示,點A為圖象的最高點,B,C為圖象與x軸的交點,且三角形ABC的面積為
( I)求ω的值及函數f(x)的值域;
( II)若f(x)=,x∈(,),求f(x+)的值.

【答案】分析:( I)利用兩角和與差的三角函數公式可求得f(x)=sin(ωx+),由S△ABC=|BC|=π可求得|BC|,繼而可求得ω,從而可得f(x)的解析式,可求函數f(x)的值域;
( II)由f(x)=可知sin(2x+)=,由x∈()可求得cos(2x+),最后利用兩角和的正弦即可求得f(x+)的值.
解答:( I)∵f(x)=3+sin?x-
=cosωx+sin?x
=sin(ωx+)(ω>0)
又S△ABC=|BC|=π,
∴|BC|==,則ω=2.
∴f(x)=sin(2x+),值域是[-,]; 5′
( II)由f(x)=得sin(2x+)=,
∵x∈(,),
<2x+<π,
∴cos(2x+)=-
則f(x+)=sin[2(x+)+]
=sin[(2x+)+]
=[sin(2x+)cos+cos(2x+)sin]
=.9′
點評:本題考查兩角和與差的三角函數,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,求得f(x)的解析式是關鍵,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=3•2x-1,則當x∈N時,數列{f(n+1)-f(n)}( 。
A、是等比數列B、是等差數列C、從第2項起是等比數列D、是常數列

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-x
+
1
x+2
的定義域為集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有滿足條件的m的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-x
+
1
x+2
的定義域為集合A,B={x|x<a}.
(1)若A⊆B,求實數a的取值范圍;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-ax
a-1
(a≠1)在區(qū)間(0,4]上是增函數,則實數a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=3-2log2x,g(x)=log2x.
(1)當x∈[1,4]時,求函數h(x)=[f(x)+1]•g(x)的值域;
(2)如果對任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案