15.集合A={x|x2-2x>0},B={y|y=2x,x∈R},R是實數(shù)集,則(∁RB)∪A等于( 。
A.RB.(-∞,0]∪(2,+∞)C.(0,1]D.(-∞,1]∪(2,+∞)

分析 化簡A、B,求出∁RB,再計算(∁RB)∪A

解答 解:∵集合A={x|x2-2x>0}
={x|x<0或x>2}
=(-∞,0)∪(2,+∞),
B={y|y=2x,x>0}={y|y>1},
∴∁RB={y|y≤1}=(-∞,1],
∴(∁RB)∪A=(-∞,1]∪(2,+∞).
故選:D.

點評 本題考查了集合的定義與基本運算問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=ax-1+2的圖象恒過定點( 。
A.(3,1)B.(0,2)C.(1,3)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.對于任意實數(shù)x,<x>表示不小于x的最小整數(shù),如<1.2>=2,<-0.2>=0.定義在R上的函數(shù)f(x)=<x>+<2x>,若集合A={y|y=f(x),-1≤x≤0},則集合A中所有元素的和為(  )
A.-3B.-4C.-5D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)i是虛數(shù)單位,$\frac{2+ai}{{1+\sqrt{2}i}}=-\sqrt{2}i$,則實數(shù)a=( 。
A.$-\sqrt{2}$B.$\sqrt{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=-x2+2x+3在區(qū)間[0,4)上的值域是( 。
A.[-5,3]B.[-5,4]C.(-5,3]D.(-5,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=2x+2ax+b且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$
(Ⅰ)求a,b的值;
(Ⅱ)判斷并證明f(x)的奇偶性;
(Ⅲ)試判斷f(x)在(-∞,0)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.數(shù)列{an}是等差數(shù)列,數(shù)列{bn}滿足bn=anan+1an+2(n∈N*),設(shè)Sn為{bn}的前n項和,若${a_{12}}=\frac{5}{8}{a_5}>0$,則當Sn取得最大值時n的值為(  )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.求函數(shù)y=$\frac{lg(4-x)}{\sqrt{{x}^{2}-2x-3}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖所示,在?ABCD中,E為CD上一點,DE:CE=2:3,連接AE,BE,BD,且AE,BD交與點F,則S△DEF:S△EBF:S△ABF等于(  )
A.4:10:25B.4:9:25C.2:3:5D.2:5:25

查看答案和解析>>

同步練習冊答案