已知拋物線的焦點(diǎn)為F,以點(diǎn)A(,0)為圓心,為半徑的圓在x軸的上方與拋物線交于M、N兩點(diǎn)。
(1)求證:點(diǎn)A在以M、N為焦點(diǎn),且過F的橢圓上。
(2)設(shè)點(diǎn)P為MN的中點(diǎn),是否存在這樣的a,使得的等差中項(xiàng)?如果存在,求a的值;如果不存在,說明理由。解析:(1)因?yàn)?點(diǎn)A的坐標(biāo)為(,0),拋物線的焦點(diǎn)為F(a,0),準(zhǔn)線為,
所以
所以 以A為圓心,|FA| 為半徑的圓在x軸的上方的方程為
,()
由
得
設(shè)M(),N()(其中:()均為正數(shù)),則有
又 拋物線上的點(diǎn)到焦點(diǎn)與準(zhǔn)線的距離相等
所以
因?yàn)辄c(diǎn)F、M、N均在⊙A上,
所以,
因?yàn)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090729/20090729172102020.gif' width=233>,且
所以點(diǎn)A在以M、N為焦點(diǎn)且過F的橢圓上
(2)假設(shè)存在滿足條件的a,則有
,即
設(shè)點(diǎn)P的坐標(biāo)為(),則有
由,得
化簡,得
所以,與矛盾
故不存在滿足條件的,即不存在值,使得點(diǎn)P為MN的中點(diǎn),且|FP|是|FM|與|FN|的等差中項(xiàng)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知拋物線的焦點(diǎn)為F,過F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).
(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧沈陽二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(二)理數(shù)學(xué)卷(解析版) 題型:填空題
已知拋物線的焦點(diǎn)為F,過拋物線在第一象限部分上一點(diǎn)P的切線為,過P點(diǎn)作平行于軸的直線,過焦點(diǎn)F作平行于的直線交于M,若,則點(diǎn)P的坐標(biāo)為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆河北省唐山市高三年級(jí)第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)已知拋物線的焦點(diǎn)為F,過點(diǎn)F作直線與拋物線交于A,B兩點(diǎn),拋物線的準(zhǔn)線與軸交于點(diǎn)C。
(1)證明:;
(2)求的最大值,并求取得最大值時(shí)線段AB的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(全國Ⅰ)理科數(shù)學(xué)全解全析 題型:解答題
(本小題滿分12分)(注意:在試題卷上作答無效)
已知拋物線的焦點(diǎn)為F,過點(diǎn)的直線與相交于、兩點(diǎn),點(diǎn)A關(guān)于軸的對(duì)稱點(diǎn)為D .
(Ⅰ)證明:點(diǎn)F在直線BD上;
(Ⅱ)設(shè),求的內(nèi)切圓M的方程 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題
已知拋物線的焦點(diǎn)為F,準(zhǔn)線為,經(jīng)過F且斜率為的直線與拋物線在軸上方的部分相交于點(diǎn)A,且AK,垂足為K,則的面積是( 。
A 4 B C D 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com