【題目】某市一所高中為備戰(zhàn)即將舉行的全市羽毛球比賽,學(xué)校決定組織甲、乙兩隊進(jìn)行羽毛球?qū)官悓崙?zhàn)訓(xùn)練.每隊四名運動員,并統(tǒng)計了以往多次比賽成績,按由高到低進(jìn)行排序分別為第一名、第二名、第三名、第四名.比賽規(guī)則為甲、乙兩隊同名次的運動員進(jìn)行對抗,每場對抗賽都互不影響,當(dāng)甲、乙兩隊的四名隊員都進(jìn)行一次對抗賽后稱為一個輪次.按以往多次比賽統(tǒng)計的結(jié)果,甲、乙兩隊同名次進(jìn)行對抗時,甲隊隊員獲勝的概率分別為,,,.

(1)進(jìn)行一個輪次對抗賽后一共有多少種對抗結(jié)果?

(2)計分規(guī)則為每次對抗賽獲勝一方所在的隊得1分,失敗一方所在的隊得0分,設(shè)進(jìn)行一個輪次對抗賽后甲隊所得分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.

【答案】(1)16種;(2)見解析,

【解析】

1)每個同名次的對抗有2種結(jié)果,共有4個名次的對抗,所以有種結(jié)果;(2)由條件可知5種情況,分別計算概率得到分布列和數(shù)學(xué)期望.

(1)由于甲、乙兩隊的四名隊員每進(jìn)行一次對抗賽都會有2種情況產(chǎn)生,所以一共有(種)

(2)X的可能取值分別為4,3,2,1,0,則

;

;

;

X的分布列為

X

4

3

2

1

0

P

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商家統(tǒng)計了去年,兩種產(chǎn)品的月銷售額(單位:萬元),繪制了月銷售額的雷達(dá)圖,圖中點表示產(chǎn)品2月份銷售額約為20萬元,點表示產(chǎn)品9月份銷售額約為25萬元.

根據(jù)圖中信息,下面統(tǒng)計結(jié)論錯誤的是(

A.產(chǎn)品的銷售額極差較大B.產(chǎn)品銷售額的中位數(shù)較大

C.產(chǎn)品的銷售額平均值較大D.產(chǎn)品的銷售額波動較小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱底面直角梯形,,,是棱上一點,,,,.

(1)求異面直線所成的角;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓M與直線相切,且與圓N外切

1)求動圓圓心M的軌跡C的方程;

2)點O為坐標(biāo)原點,過曲線C外且不在y軸上的點P作曲線C的兩條切線,切點分別記為A,B,當(dāng)直線的斜率之積為時,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口某天0時至24時的水深(米)隨時間(時)變化曲線近似滿足如下函數(shù)模型.若該港口在該天0時至24時內(nèi),有且只有3個時刻水深為3米,則該港口該天水最深的時刻不可能為(

A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為正方形, 平面 , 上一點,且.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下說法:

①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;

②設(shè)有一個回歸方程,變量增加1個單位時,平均增加5個單位

③線性回歸方程必過

④設(shè)具有相關(guān)關(guān)系的兩個變量的相關(guān)系數(shù)為,那么越接近于0,之間的線性相關(guān)程度越高;

⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大。

其中錯誤的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),若對于tR,f(t)≤kt恒成立,則實數(shù)k的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是自然對數(shù)的底數(shù),已知函數(shù),.

1)求函數(shù)的最小值;

2)函數(shù)上能否恰有兩個零點?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案