17.已知點P(2,1)和直線l:3x-y-7=0.求:
(1)過點P與直線l平行的直線方程;
(2)過點P與直線l垂直的直線方程.

分析 (1)根據(jù)直線平行設出所求直線法方程,將P帶入即可;(2)根據(jù)直線垂直求出所求直線的斜率,帶入點斜式方程即可.

解答 解:(1)∵直線和3x-y-7=0平行,
故設直線的方程是:3x-y+c=0,
將P(2,1)帶入直線的方程得:
6-1+c=0,解得:c=-5,
故所求直線的方程是:3x-y-5=0.
(2)直線l的斜率是3,
故所求直線的方程是-$\frac{1}{3}$,
故所求直線的方程是y-1=-$\frac{1}{3}$(x-2),
整理得:x-3y+1=0.

點評 本題考查了求直線方程問題,考查直線的位置關系,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.圓C1:(x-1)2+(y-3)2=9和C2:x2+(y-2)2=1,M,N分別是圓C1,C2上的點,P是直線y=-1上的點,則|PM|+|PN|的最小值是( 。
A.5$\sqrt{2}$-4B.$\sqrt{17}$-1C.6-2$\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在正三角形△ABC內任取一點P,則點P到A,B,C的距離都大于該三角形邊長一半的概率為( 。
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{12}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{18}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知f(x)=ax2-x-c,若不等式f(x)>0的解集為{x|-2<x<1},則函數(shù)y=f(-x)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某休閑廣場中央有一個半徑為1(百米)的圓形花壇,現(xiàn)計劃在該花壇內建造一條六邊形觀光步道,圍出一個由兩個全等的等腰梯形(梯形ABCF和梯形DEFC)構成的六邊形ABCDEF區(qū)域,其中A、B、C、D、E、F都在圓周上,CF為圓的直徑(如圖).設∠AOF=θ,其中O為圓心.
(1)把六邊形ABCDEF的面積表示成關于θ的函數(shù)f(θ);
(2)當θ為何值時,可使得六邊形區(qū)域面積達到最大?并求最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列各式比較大小正確的是(  )
A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.直線3x-y+1=0在y軸上的截距是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=$\left\{\begin{array}{l}|{lo{g}_{5}(1-x)|,(x<1)}\\{-(x-2)^{2}+2,(x>1,x≠2)}\end{array}\right.$ 且對于方程f(x)2-af(x)+a2-3=0有7個實數(shù)根,則實數(shù)a的取值范圍是$\sqrt{3}<a<2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知空間向量$\overrightarrow a$=(0,1,1),$\overrightarrow b$=(-1,0,1),則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習冊答案