已知點(diǎn)F1、F2為雙曲線數(shù)學(xué)公式(a>0,b>0)的左、右焦點(diǎn),P為右支上一點(diǎn),點(diǎn)P到右準(zhǔn)線的距離為d,若|PF1|、|PF2|、d依次成等差數(shù)列,則此雙曲線的離心率的取值范圍是


  1. A.
    數(shù)學(xué)公式,+∞)
  2. B.
    (1,數(shù)學(xué)公式
  3. C.
    (1,數(shù)學(xué)公式
  4. D.
    [2,數(shù)學(xué)公式
C
分析:根據(jù)雙曲線的定義,結(jié)合等差數(shù)列的含義,得到|PF2|-|PF1|=d-|PF2|=-2a,再用圓錐曲線的統(tǒng)一定義,得到,因此d-|PF2|=d(1-e)=-2a,得到d=,最后根據(jù)雙曲線右支上一點(diǎn)到右準(zhǔn)線的距離的取值范圍,得d≥a-,建立關(guān)于a、c和e的不等式,解之即得此雙曲線的離心率的取值范圍.
解答:∵|PF1|、|PF2|、d依次成等差數(shù)列,
∴|PF2|-|PF1|=d-|PF2|,
∵P為雙曲線右支上一點(diǎn),(a>0,b>0)
∴|PF2|-|PF1|=-2a=d-|PF2|,
設(shè)雙曲線的離心率是e,根據(jù)圓錐曲線的統(tǒng)一定義,
得到,所以d-|PF2|=d(1-e)=-2a
∴根據(jù)雙曲線右支上一點(diǎn)到右準(zhǔn)線的距離的取值范圍,得:d=≥a-,
上式的兩邊都除以a,得:≥1-,解此不等式得:≤e≤
又∵雙曲線的離心率e>1,
∴e∈
故選C
點(diǎn)評(píng):本題以等差數(shù)列為載體,求雙曲線的離心率,著重考查了雙曲線的簡(jiǎn)單性質(zhì)和等差數(shù)列的概念等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對(duì)稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點(diǎn),F1F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;

    (3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點(diǎn),另一直線l經(jīng)過(guò)M (–2,0)及AB的中點(diǎn),求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的左、右焦點(diǎn)分別為F1、F2,其一條漸近方程為y=x,點(diǎn) 在該雙上,則

(A)-12          (B)-2          (C)0           (D)4

查看答案和解析>>

同步練習(xí)冊(cè)答案